Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Rozpoznawanie brył przestrzennych. GRANIASTOSŁUP GRANIASTOSŁUP JEST TO BRYŁA, KTÓRA MA: -DWIE PODSTAWY (DOWOLNE PRZYSTAJĄCE WIELOKĄTY) ZAWARTE W RÓWNOLEGŁYCH.

Podobne prezentacje


Prezentacja na temat: "Rozpoznawanie brył przestrzennych. GRANIASTOSŁUP GRANIASTOSŁUP JEST TO BRYŁA, KTÓRA MA: -DWIE PODSTAWY (DOWOLNE PRZYSTAJĄCE WIELOKĄTY) ZAWARTE W RÓWNOLEGŁYCH."— Zapis prezentacji:

1 Rozpoznawanie brył przestrzennych

2 GRANIASTOSŁUP GRANIASTOSŁUP JEST TO BRYŁA, KTÓRA MA: -DWIE PODSTAWY (DOWOLNE PRZYSTAJĄCE WIELOKĄTY) ZAWARTE W RÓWNOLEGŁYCH PŁASZCZYZNACH -ŚCIANY BOCZNE, KTÓRE SĄ RÓWNOLEGŁOBOKAMI.

3 GRANIASTOSŁUP PROSTY GRANIASTOSŁUP PROSTY JEST TO GRANIASTOSŁUP W KTÓRYM: -KAŻDA KRAWĘDŹ BOCZNA JEST PROSTOPADŁA DO PŁASZCZYZNY PODSTAWY -KAŻDA KRAWĘDŹ BOCZNA JEST WYSOKOŚCIĄ -KAŻDA ŚCIANA BOCZNA JEST PROSTOKĄTEM.

4 Przykłady graniastosłupów prostych

5 Graniastosłup prawidłowy Jest to graniastosłup prosty, którego podstawą jest wielokąt foremny

6 Prostopadłościan Jest to graniastosłup prosty, którego podstawami są prostokąty

7 Sześcian To taki prostopadłościan, którego każda ściana jest kwadratem

8 Doskonale znamy piramidy egipskie. Mają one kształt figur, które nazywamy ostrosłupami.

9 OSTROSŁUP OSTROSŁUP JEST TO WIELOŚCIAN, KTÓRY MA: -JEDNĄ PODSTAWĘ, KTÓRA JEST DOWOLNYM WIELOKĄTEM -ŚCIANY BOCZNE, KTÓRE SĄ TRÓJKĄTAMI MAJĄCYMI WSPÓLNY WIERZCHOŁEK, KTÓRY NAZYWAMY WIERZCHOŁKIEM OSTROSŁUPA.

10 Ostrosłup, którego wszystkie krawędzie są równej długości, nazywamy czworościanem foremnym.

11 Ostrosłup nazywamy prawidłowym, jeżeli jego podstawa jest wielokątem foremnym, a ściany boczne są trójkątami równoramiennymi.

12 OSTROSŁUP PIĘCIOKĄTNY OSTROSŁUP TRÓJKĄTNY OSTROSŁUP SZEŚCIOKĄTNY OSTROSŁUP CZWOROKĄTNY OSTROSŁUP SIEDMIOKĄTNY

13 Ostrosłup czworokątny Ostrosłup trójkątny Ostrosłup sześciokątny

14 Konstrukcja walca. Walec jest bryłą geometryczną powstałą w wyniku obrotu prostokąta wokół jednego z jego boków. Podstawą walca jest koło.

15 S spodek wysokości rpromień podstawy wysokość oś obrotu

16 r H r H - promień podstawy - wysokość walca oś obrotu OPIS WALCA

17 Budowa Waleca. WALEC SKŁADA SIĘ Z: -DWÓCH PODSTAW, KTÓRE SĄ PRZYSTAJĄCYMI KOŁAMI ZAWARTYMI W RÓWNOLEGŁYCH PŁASZCZYZNACH -Z POWIERZCHNI BOCZNEJ, KTÓRA PO ROZWINIĘCIU NA PŁASZCZYŹNIE JEST PROSTOKĄTEM

18 SIATKA WALCA

19

20

21 Przykłady walców.

22 Stożek Stożek to bryła wypukła która powstaje przez obrót trójkąta prostokątnego wokół prostej zawierającej jedną z przyprostokątnych. Podstawą stożka jest koło o promieniu r.

23 STOŻEK STOŻEK SKŁADA SIĘ Z: -PODSTAWY KTÓRA JEST KOŁEM -POWIERZCHNI BOCZNEJ, KTÓRA PO ROZWINIĘCIU NA PŁASZCZYŹNIE JEST WYCINKIEM KOŁA.

24 α Stożkiem nazywamy bryłę obrotową powstałą przez obrót trójkąta prostokątnego dookoła prostej zawierającej jedną z przyprostokątnych.Stożkiem nazywamy bryłę obrotową powstałą przez obrót trójkąta prostokątnego dookoła prostej zawierającej jedną z przyprostokątnych. H oś obrotu kąt rozwarcia stożka tworząca wysokość promień podstawy spodek wysokości r S podstawa

25 H r H r l l OPIS STOŻKA - promień podstawy - wysokość stożka - tworząca stożka O S - spodek wysokości O S- wierzchołek stożka

26 Przekrojom osiowym stożka jest trójkąt równoramienny.

27 Przekrojem poprzecznym sto ż ka jest koło lub punkt.

28 Siatka stożka.

29 Stożek Przykłady innych stożków.

30 Kula. Przykładem kuli jest kula do bilarda lub pomarańcza.

31 r Kula jest bryłą obrotową powstałą przez obrót koła lub półkola dookoła prostej, w której zawarta jest jego średnica.

32 KULA

33 Kula r - promień kuli d -średnica kuli O – środek kuli

34 Związane pojęcia Cięciwa kuli to odcinek o końcach na brzegu kuli. Średnica kuli to cięciwa przechodząca przez środek kuli. Termin ten oznacza również długość tej cięciwy – równą podwojonej długości promienia kuli.

35 OPIS KULI oś obrotu r r - promień kuli koło wielkie kuli S S - środek kuli

36 Każdy niepusty przekrój kuli jest kołem lub punktem.

37 PRZEKRÓJ OSIOWY KULI Przekrój osiowy kuli nazywamy kołem wielkim.

38 POWIERZCHNIA KULI Powierzchnią kuli jest sfera.

39 Sfera Jest to część przestrzeni składająca się z punktów oddalonych o pewną odległość zwaną promieniem sfery.Można powiedzieć że sfera jest brzegiem kuli. Przykładem sfery jest piłka do siatkówki lub piłeczka do ping - ponga.

40 KONIEC


Pobierz ppt "Rozpoznawanie brył przestrzennych. GRANIASTOSŁUP GRANIASTOSŁUP JEST TO BRYŁA, KTÓRA MA: -DWIE PODSTAWY (DOWOLNE PRZYSTAJĄCE WIELOKĄTY) ZAWARTE W RÓWNOLEGŁYCH."

Podobne prezentacje


Reklamy Google