Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Tematyka poprzednich wykładów

Podobne prezentacje


Prezentacja na temat: "Tematyka poprzednich wykładów"— Zapis prezentacji:

1 Tematyka poprzednich wykładów
Definicje i pojęcia: „produkcja” ; „proces” ; „wyrób”; „technologia”; „ proces technologiczny”; procesy składowe w procesie technologicznym charakterystyka produkcji podstawowej w sektorze spożywczym Przygotowanie produkcji wtórna ochrona środowiska (technologie „końca rury”) pierwotna ochrona środowiska (technologie zrównoważonego rozwoju) podstawowe założenia programu polityki ekologicznej opracowanej przez Komisję Wspólnot Europejskich strategia Czystszej Produkcji (CP) strategia Zintegrowanej Produkcji Produktowej (ZPP) podstawowa zasada podejmowania działań ograniczających szkodliwe oddziaływania na środowisko charakterystyczne cechy wyróżniające strategię ochrony środowiska polegającą na zintegrowanym podejściu środowiskowym do produktu najlepsza Dostępna Technika (BAT)

2 Metodologia oceny wpływu na środowisko wyrobów na różnych etapach ich cyklu życia
Okres życia wyrobu Ocena cyklu życia LCA System wyrobu w ujęciu LCA Fazy oceny cyklu życia LCA Określenie zakresu i celu badań Analiza zbioru w cyklu życia LCI

3 Okres życia wyrobu Okres życia wyrobu kojarzy się z okresem narodzin wyrobu i jego likwidacji Pojęcie „okres życia wyrobu” przyjmuje różne treści znaczeniowe w zależności od tego jak definiuje się poszczególne fazy (etapy) jego życia

4 W zarządzaniu produkcją przemysłową, czyli w tzw
W zarządzaniu produkcją przemysłową, czyli w tzw. „modelach przemysłowych” do określenia życia wyrobu używa się pojęcia „proces realizacji wyrobu” W zarządzaniu oddziaływania wyrobu na środowisko, czyli w tzw. „zarządzaniu środowiskiem” do określenia życia wyrobu używa się określenia „cykl życia wyrobu”

5 W systemach zarządzania jakością ISO 9000
do określenia życia wyrobu używa się określenia „spirala jakości”

6 W modelach produkcji przemysłowej
ogólny model działań od powstania koncepcji wyrobu aż po jego likwidację przedstawia się następująco : identyfikacja potrzeb; przygotowanie procesu wykonania obiektu zaspokajającego potrzeby; wykonanie obiektu zaspokajającego potrzeby; przekazanie obiektu użytkownikowi konsumentowi; użytkowanie obiektu; likwidacja obiektu i ewentualnie samego procesu realizacji.

7 Zakłada się, że wszystkim etapom towarzyszą procesy zapobiegania i likwidacji, bądź minimalizacji wszelkich ubocznych, wprowadzanych przez procesy skutków Model przemysłowego procesu realizacji: IP – identyfikacja potrzeb, W – zbiór wymagań, PP – przygotowanie produkcji, Pr – produkcja, P – produkt, D – dystrybucja, U – użytkowanie, L – likwidacja, Z – złomowanie, O – odzysk, ESZ – etap sprzężenia zwrotnego, ZUS – zapobieganie ujemnym skutkom ubocznym dla środowiska [Kilinski 1979]

8 W badaniach aspektów środowiskowych i potencjalnych wpływów na środowisko w całym okresie życia wyrobu na cykl życia wg normy PN-EN ISO składają się: kolejne i powiązane ze sobą etapy od pozyskania lub wytworzenia surowca z zasobów naturalnych do ostatecznej likwidacji wyrobu

9 Wg PN-ISO 9000 w każdym cyklu realizacji wyrobu etapy życia wyrobu tworzą krąg jakości, kolejne - spiralę jakości. Krąg ten obejmuje etapy od wstępnego określenia do ostatecznego zaspokojenia wymagań i oczekiwań odbiorcy.

10 cykle otwarte i zamknięte
Niezależnie od tego jak się definiuje poszczególne etapy życia wyrobu to kończy się ono jego likwidacją W aspekcie odpowiedzialności za wyrób (sposobu jego likwidacji) rozróżnia się: cykle otwarte i zamknięte

11

12 Punkt wyjścia do opracowywania nowych, przyjaznych środowisku, technologii wytwarzania i zasad użytkowania wyrobu stanowi : znajomość potencjalnych wpływów wyrobów na środowisko w poszczególnych etapach ich cyklu życia, w ujęciu normy PN-EN ISO 14040 Jedną z kilku technik badania aspektów środowiskowych i potencjalnych wpływów na środowisko w całym okresie życia wyrobu (tj. „od kołyski do grobu”) jest Ocena Cyklu Życia LCA (Life Cycle Assessment).

13 Ocena Cyklu Życia LCA (Life Cycle Assessment)
inwentaryzacja zbioru istotnych wejść i wyjść systemu wyrobu ocena potencjalnych wpływów na środowisko związanych z tymi wejściami i wyjściami interpretację rezultatów analizy zbioru oraz faz oceny wpływu w odniesieniu do celów badań Podstawowe kategorie wpływu: wykorzystanie zasobów zdrowie człowieka skutki ekologiczne

14 Ocena Cyklu Życia LCA (Life Cycle Assessment)
nowa, rozwijająca się technika środowiskowego zarządzania wyrobem w odróżnieniu od innych technik (ocena wpływu na środowisko, ocena ryzyka, ocena efektów działalności środowiskowej, auditowanie środowiskowe) jest podejściem względnym, opartym na ilościowych efektach oddziaływania systemu wyrobu na środowisko

15 Obszary wykorzystania LCA
identyfikacja możliwości poprawy aspektów środowiskowych wyrobów podejmowanie decyzji w przemyśle, rolnictwie, organizacjach rządowych lub pozarządowych wybór wskaźników oceny efektów działalności środowiskowej, włączając techniki pomiarowe; marketing (oświadczenia środowiskowe, eko-etykietowanie lub deklaracje środowiskowe wyrobów)

16 Zakres stosowania LCA :
wewnętrzny – do udoskonalania produktu pod kątem ekologicznym oraz jako narzędzie wspomagające podejmowanie decyzji strategicznych; zewnętrzny – do celów marketingowych, eko-znakowania oraz celów informacyjnych.

17 Ograniczenia LCA dokonane wybory i przyjęte założenia (warunki brzegowe, wybór źródeł danych, kategorii wpływów) mogą mieć subiektywny charakter problem adekwatności modeli zastosowanych do analizy danych i oceny wpływów na środowisko problem różnic między uwarunkowaniami lokalnymi, regionalnymi i globalnymi; problem dostępu do danych i ich jakość zmienność przestrzenna i czasowa charakterystyk kategorii wpływu

18 Normy ISO dotyczące prowadzenia badań LCA

19 System wyrobu charakteryzowany jest więc funkcją wyrobu
Zasadnicza cecha badań LCA „ zebranie i ocena wejść, wyjść oraz potencjalnych wpływów na środowisko systemu wyrobu w okresie jego cyklu życia” „System wyrobu: zbiór materiałowo i energetycznie połączonych procesów jednostkowych, które spełniają jedną lub więcej określonych funkcji” System wyrobu charakteryzowany jest więc funkcją wyrobu wg PN-EN ISO 14040:2000, Zarządzanie Środowiskowe –Ocena cyklu życia –Zasady i struktura, Polski Komitet Normalizacyjny, Warszawa wrzesień2000

20 system wyrobu, charakteryzowany jako funkcją wyrobu
nie może być definiowany (utożsamiany) wyłącznie jako wyrób końcowy W zależności od kontekstu, określenie „wyrób” może być jednak utożsamiane z systemem wyrobu (usługi) wg PN-EN ISO 14040:2000, Zarządzanie Środowiskowe –Ocena cyklu życia –Zasady i struktura, Polski Komitet Normalizacyjny, Warszawa wrzesień2000

21 Funkcje wyrobu są przełożeniem (odzwierciedleniem) potrzeb i wymagań klientów
Wyróżnia się funkcje: podstawowe podrzędne zbędne np. system żarówka: podstawowa: oświetla podrzędne: sygnalizuje zbędne: wydziela ciepło

22 System produkcyjny Celowo zaprojektowany i zorganizowany układ materialny, energetyczny i informacyjny, eksploatowany przez człowieka i służący wytwarzaniu określonych wyrobów w celu zaspokojenia wymagań klientów Wyrób: jest materialnym, energetycznym lub informacyjnym rezultatem funkcjonowania systemu produkcyjnego „System wyrobu: zbiór materiałowo i energetycznie połączonych procesów jednostkowych, które spełniają jedną lub więcej określonych funkcji”

23 Przykłady systemów wyrobu
Farba Suszarka do rąk Współwytwarzanie Funkcje Zabezpieczenie powierzchni, naniesienie koloru suszenie dłoni po umyciu Wytwarzanie energii elektrycznej oraz ciepła Systemy wyrobu: jedno i wielofunkcyjne PN-EN ISO 14041:2000; PN-EN ISO 14049:2000

24 Oddziaływanie etapów systemu wyrobu (produktu) na środowisko w LCA (cyklu życia)
Szkolenie w ramach projektu pt. „Propagowanie wzorców produkcji i konsumpcji sprzyjających promocji zasad trwałego i zrównoważonego rozwoju” mgr inż. Jolanta Baran, Politechnika Śląska w Gliwicach; Wydział Organizacji i Zarządzania,Stowarzyszenie„POLSKI RUCH CZYSTSZEJ PRODUKCJI”UM, Gliwice 29 maj 2006: Opracowano na podstawie: Ryszko Adam, Ocena cyklu życia jako narzędzie wspomagające rozwój produktu. W: Organizacja i Zarządzanie Zeszyt Piętnasty, Zeszyty Naukowe Politechniki Śląskiej, Wydawnictwo Politechniki Śląskiej, Gliwice 2003.

25 Elementy opisu systemu wyrobu (wyrobu):
Procesy jednostkowe Strumienie elementarne Przepływy wyrobu poza granice systemu (do lub z systemu) Strumienie wyrobów pośrednich wewnątrz systemów System wyrobu: zbiór materiałowo i energetycznie połączonych procesów jednostkowych, które spełniają jedną lub więcej określonych funkcji PN-EN ISO 14041:2000; PN-EN ISO 14049:2000

26 Poziom szczegółowości modelowania:
Proces jednostkowy: najmniejsza część systemu wyrobu, dla której gromadzone są dane podczas LCA Do opisu procesu jednostkowego niezbędne jest ustalenie: początku procesu – w rozumieniu przyjęcia surowców lub wyrobów pośrednich, rodzaju zachodzących przemian oraz operacji końca procesu w znaczeniu przeznaczenia wyrobów pośrednich lub końcowych Poziom szczegółowości modelowania: uzależniony od założonego celu badania PN-EN ISO 14041:2000;

27 Strumienie elementarne
Podział systemu wyrobu na składowe procesy jednostkowe ułatwia identyfikację wejść i wyjść systemu Strumienie elementarne wchodzące – surowce i energia nieprzetworzona, np. ropa naftowa, promieniowanie słoneczne wychodzące – emisje i inne aspekty środowiskowe, np.: promieniowanie, uwolnione do środowiska bez przetworzenia

28 Połączenia procesów jednostkowych
Procesy jednostkowe Strumienie elementarne Przepływy wyrobu poza granice systemu (do lub z systemu) Strumienie wyrobów pośrednich wewnątrz systemów wzajemne – strumienie wyrobów pośrednich lub odpadów do przerobienia z innymi systemami - strumienie wyrobów pośrednich ze środowiskiem – strumienie elementarne PN-EN ISO 14041:2000; PN-EN ISO 14049:2000

29 Strumienie wyrobów pośrednich:
współwyroby, podzespoły, wyroby

30 Główne kategorie danych wykorzystywanych do kwantyfikacji wejść i wyjść
IW – pomocnicze (nie są częścią składową procesu – mat., transp., usługi) IAŚ – wibracje, odory, itp Rodzaj i poziom uszczegółowienia danych uzależnione są od celu badania LCA Szkolenie w ramach projektu pt. „Propagowanie wzorców produkcji i konsumpcji sprzyjających promocji zasad trwałego i zrównoważonego rozwoju” mgr inż. Jolanta Baran, Politechnika Śląska w Gliwicach; Wydział Organizacji i Zarządzania,Stowarzyszenie„POLSKI RUCH CZYSTSZEJ PRODUKCJI”UM, Gliwice 29 maj 2006

31 Fazy (etapy) oceny cyklu życia
Szkolenie w ramach projektu pt. „Propagowanie wzorców produkcji i konsumpcji sprzyjających promocji zasad trwałego i zrównoważonego rozwoju” mgr inż. Jolanta Baran, Politechnika Śląska w Gliwicach; Wydział Organizacji i Zarządzania,Stowarzyszenie„POLSKI RUCH CZYSTSZEJ PRODUKCJI”UM, Gliwice 29 maj 2006

32 Faza I – określenie celu i zakresu (PN-EN 14041)
Określa wstępny plan przeprowadzenia analizy LCA poprzez zdefiniowanie celu i zakresu badań, w tym w szczególności: identyfikację przyczyn określających potrzebę przeprowadzenia badań, identyfikację zamierzeń dotyczących wdrożeń, identyfikację odbiorców badań, określenie systemu ograniczeń w badaniach.

33 Przebieg realizacji I fazy badań LCA opisuje procedura, która polega na wykonaniu poniższych kroków:
Cel działania Określenie wyrobu Wybór ograniczeń systemu Wybór parametrów środowiska Wybór metody i oceny danych Strategia zbierania danych Zakres badań może ulegać modyfikacji w trakcie badań!!! Wstępne uruchomienie metody LCA Weryfikacja celu i zakresu badań Szkolenie w ramach projektu pt. „Propagowanie wzorców produkcji i konsumpcji sprzyjających promocji zasad trwałego i zrównoważonego rozwoju” mgr inż. Jolanta Baran, Politechnika Śląska w Gliwicach; Wydział Organizacji i Zarządzania,Stowarzyszenie„POLSKI RUCH CZYSTSZEJ PRODUKCJI”UM, Gliwice 29 maj 2006

34 POP-CORN - POLYSTYRENE
PS: Non renewable material + non biodegradable Pop-corn: Renewable material + biodegradable Go beyond "a priori": What is the key parameter from environmental point of view ?

35 Product comparison Straw pole (wstępne analizy) on expected outcome popcorn as a replacement for polystyrene packaging: Worse equivalent 2x 10x 100x x better What would you need to measure determine the which is better???? Get participants to list the advantages and disadvantages of each of the products and guess a likely outcome from and environmental comparison Kluczowe pytania

36 Funkcje i jednostka funkcjonalna
Funkcja określa cel jakiemu służy system wyrobu Pojęcie funkcji wiąże się z właściwościami systemu wyrobu lub procesu System Farba Suszarka do rąk Współwytwarzanie Funkcje Zabezpieczenie powierzchni, naniesienie koloru suszenie dłoni po umyciu Wytwarzanie energii elektrycznej oraz ciepła Do LCA wybiera się funkcje istotnie związane z celem badań PN-EN ISO 14041:2000; PN-EN ISO 14049:2000

37 Funkcje i jednostka funkcjonalna
Jednostka funkcjonalna określa ilościowo zidentyfikowane znaczące funkcje, realizowane w ramach systemu wyrobu System Farba, malowanie Suszarka do rąk, suszenie rąk Współwytwarzanie Funkcje Zabezpieczenie powierzchni, naniesienie koloru suszenie dłoni po umyciu Wytwarzanie energii elektrycznej oraz ciepła Jednostka funkcjonalna wymalowanie x m2 ściany farbą typu A, krycie 98 % oraz trwałość 5 lat liczba par dłoni wysuszonych Wytwarzanie x MW energii elektrycznej oraz y MJ ciepła PN-EN ISO 14041:2000; PN-EN ISO 14049:2000

38 Funkcje i jednostka funkcjonalna
Na podstawie jednostki funkcjonalnej ustala się: efektywność wyrobu strumień odniesienia Efektywność wyrobu „wydajność procesu w danym systemie wyrobu, określana jako wynik znormalizowanej metody pomiarowej” Strumień odniesienia „miara wyjść z procesów w danym systemie wyrobu, niezbędnych do wypełnienia funkcji wyrażonej przez jednostkę funkcjonalną” Strumień odniesienia wykorzystywany jest do normalizacji danych wejściowych i wyjściowych procesu jednostkowego (w ujęciu matematycznym) PN-EN ISO 14041:2000; PN-EN ISO 14049:2000

39 Funkcja + określenie ilościowe Wydajność jednostkowa
PN-EN ISO 14049:2000 A Funkcja + określenie ilościowe Wydajność jednostkowa B C=A/B Wynik ilościowy

40 Funkcje i jednostka funkcjonalna
Wybór jednostki funkcjonalnej wiąże się ściśle z celem badania Kolejne kroki : identyfikacja i opisanie wszystkich znaczących funkcji systemu wybór najbardziej istotnych funkcji i określenie jednostki funkcjonalnej jednofunkcyjnej wielofunkcyjnej

41 Funkcje i jednostka funkcjonalna
PN-EN ISO 14049:2000

42 Funkcje i jednostka funkcjonalna
Odrzucono funkcję „wytwarzanie ciepła” Czy we wszystkich badaniach tego systemu będzie to właściwe? Ciepło dostarczane przez sprzęt gospodarstwa domowego wpływa na ilość energii do ogrzewania i/lub chłodzenia budynku PN-EN ISO 14049:2000

43 Funkcje i jednostka funkcjonalna
Czy wskazane jest odrzucenie funkcji usuwanie bakterii w badaniach systemów używanych w przemyśle spożywczym? PN-EN ISO 14049:2000

44 Lp. Wyrób Jednostka funkcjonalna 1 Wykładzina podłogowa Ilość pokrycia podłogowego potrzebna do pokrycia 1m2 powierzchni w w czasie x lat. 2 Procesy wydobycia węgla 1 Mg wydobywanego rudy 3 Ekspres do kawy Ekspres, w którym sporządza się x filiżanek kawy n razy dziennie i kawa ta pozostaje gorąca przez y min. po jej sporządzeniu. 4 Opakowania do jajek szt. jajek, które potrzebują szt. opakowań (1 opakowanie dla 10 szt. jajek). 5 Produkcja i użytkowanie samochodu osobowego Samochód przejeżdżający rocznie 10000km, eksploatowany przez 10lat, spalający 10l benzyny na 100km i ważący 1200kg 6 Produkcja ołówków Partia 1000 ołówków 7 Zakład obuwniczy 1 para wyprodukowanych butów 8 Obróbka osadów ściekowych z oczyszczalni dla równoważnej ilości mieszkańców 1 t suchej masy składowanego materiału odpadowego 9 Gospodarka odpadami domowymi Średnia ilość odpadów z gospodarstwa domowego wytwarzana w ciągu 1 roku

45

46 Wyznaczają procesy jednostkowe włączone do LCA
Granice systemu Wyznaczają procesy jednostkowe włączone do LCA Czynniki wpływające na wybór granic systemu cel badań (zamierzone zastosowania, uzasadnienie prowadzenia badań, określenie odbiorcy wyników badań) kryteria rozgraniczenia, ograniczenia danych oraz kosztów Granice systemu determinują wybór wejść i wyjść określają poziom szczegółowości modelowania PN-EN ISO 14041:2000; PN-EN ISO 14049:2000

47 Zaleca się uwzględnienie
wejść i wyjść w cyklu wytwarzania dystrybucji/transportu produkcji i wykorzystania paliw, energii elektrycznej, ciepła użytkowania wyrobów usuwania odpadów odzyskiwania wykorzystanych wyrobów wytwarzania materiałów pomocniczych wytwarzania, obsługiwania i likwidacji wyposażenia podstawowego operacji dodatkowych, np. oświetlenie, ogrzewanie itp. innych zagadnień związanych z oceną wpływu, jeżeli występują Wszystkie etapy życia wyrobu PN-EN ISO 14041:2000; PN-EN ISO 14049:2000

48 Przykład opisu systemu wyrobu (granic systemu wyrobu)
Procesy jednostkowe Strumienie elementarne Przepływy wyrobu poza granice systemu (do lub z systemu) Strumienie wyrobów pośrednich wewnątrz systemów GS – obszar styku pomiędzy SW i środowiskiem (ŚR) lub systemami innych wyrobów (SIW) SE – materiał lub energia nieprzetworzona wchodząca (surowce promieniowanie słoneczne) lub wychodząca z systemu (emisje, promieniowanie) System wyrobu: procesy jednostkowe strumienie elementarne PN-EN ISO 14041:2000

49 Przykłady definiowania granic systemu
GaBi Paper Clip Tutorial Part 1 Introduction to LCA and modelling using GaBi

50 Renewable packing materials system boundary for popcorn

51 Packing materials system boundary for polystyrene
Styrene production Blowing agent Polymerisation with blowing EPS Refinery products

52 PN-EN ISO 14049:2000

53 Krok 1 PN-EN ISO 14049:2000

54 Krok 1

55 Krok 2 PN-EN ISO 14049:2000

56 Źródło danych dotyczących wejść i wyjść
Krok 2 Źródło danych dotyczących wejść i wyjść zmierzone obliczone na podstawie publikowanych materiałów źródłowych oszacowane, np. na podstawie ankiet lub innych dostępnych źródeł PN-EN ISO 14040:2000; PN-EN ISO 14041:2000; PN-EN ISO 14048:2000

57 Krok 2 Opis procesu jednostkowego dla produkcji szkła Zebranie danych
PN-EN ISO 14049:2000

58 Krok 2

59 Krok 3 PN-EN ISO 14049:2000

60 Krok 3 Oszacowanie strumieni materiału i energii dla butelek szklanych
PN-EN ISO 14049:2000

61 Krok 3 Oszacowanie zużycia energii na etapach cyklu życia butelek szklanych PN-EN ISO 14049:2000

62 Krok 4 Celem jest dokonanie identyfikacji istotnych wejść związanych z każdym procesem jednostkowym PN-EN ISO 14049:2000

63 Krok 4 Kryteria wyboru masa :
do badań włącza się wszystkie wejścia, które mają skumulowany udział większy niż określony procentowy udział całej masy na wejściach do systemu wyrobu, lub wyłącza się te materiały, których udział w masie wejść procesu jednostkowego jest mniejszy niż 5% wyłącza się te materiały, których udział jest mniejszy niż 1% całej masy wejść systemu wyrobu PN-EN ISO 14049:2000

64 Krok 4 Kryteria wyboru energia :
do badań włącza się wszystkie wejścia, które mają skumulowany udział większy niż określony procentowy udział całej energii na wejściach do systemu wyrobu PN-EN ISO 14049:2000

65 Krok 4 Kryteria wyboru związek ze środowiskiem :
do badań włącza się wszystkie wejścia, jakie wnoszą do ocenianej kategorii danych systemu wyrobu więcej niż określony udział procentowy PN-EN ISO 14049:2000

66 Krok 5 PN-EN ISO 14049:2000

67 Krok 5 Włączono materiały, których skumulowana masa jest większa niż 99% ogólnej masy wejść do systemu PN-EN ISO 14049:2000

68 Niektóre materiały nieistotne ze względu na kryterium masy mogą być bardziej energochłonne niż inne
Np. w przypadku butelek stwierdzono, że bardzo energochłonnymi procesami są procesy płukanie i napełnianie oraz „Użycie (chłodzenie u konsumenta)”, które wymagają użycia niewielkiej ilości materiałów

69 Krok 5 Uwzględniono procesy, których skumulowany udział jest większy niż 99% ogólnej wymaganej energii systemu PN-EN ISO 14049:2000

70 Niektóre materiały nieistotne ze względu na kryterium masy czy energii mogą mieć ważny udział w emisjach toksycznych Np. w przypadku butelek stwierdzono, że takimi materiałami są: cyna, chlorek sodu oraz kaolin i lepiszcze - materiały te w tabeli ilustrującej zastosowanie kryterium masy oznaczono indeksem „b”

71 Krok 5 Procesy systemu butelek szklanych odpowiedzialne za co najmniej 90 % udziału w kategorii wpływu „toksyczne dla ludzi, powietrze” Oznacza to potrzebę włączenia do badań wejść, które wnoszą emisję tych dwóch kategorii danych „ołów do powietrza”, „tlenki azotu do powietrza” PN-EN ISO 14049:2000

72 Zasada podejmowania decyzji może być ustalona dla każdej indywidualnej kategorii danych (slide 30) lub kategorii oceny wpływu

73 Za PKN-ISO/TR 14047:2006

74

75 Wymagania jakościowe dotyczące danych:
zależą od poziomu uszczegółowienia badań W zależności od celu i zakresu badań, charakterystyki danych powinny uwzględniać: przedział czasowy (czas gromadzenia danych) obszar geograficzny (np. lokalny) obszar technologiczny (np. średnia ważona procesów) dokładność (zmienność), kompletność (udział miejsc zbierania danych w stosunku do możliwej liczby takich miejsc), źródło danych i ich reprezentatywność (odzwierciedlenie badanej populacji) spójność (zachowanie jednakowej metodyki badań) odtwarzalność (możliwość odtworzenia wyników)

76 Faza II oceny cyklu życia LCA
Analiza zbioru w cyklu życia LCI (PN-EN 14041) life cycle inventory analysis

77 Analiza zbioru w cyklu życia LCI obejmuje
identyfikację, kompilację i ocenę ilościową zużycia zasobów naturalnych i emisji w cyklu życia wyrobów – badanie ekobilansu tworzenie katalogu (tablic inwentarzowych) danych dotyczących zużycia zasobów naturalnych oraz generowanych emisji i odpadów, w cyklu życia wyrobów

78 Przebieg realizacji etapu II

79 Przygotowanie do zbierania danych
sporządzenie diagramów przepływu procesów sporządzenie szczegółowego opisu każdego procesu jednostkowego wraz z wykazem kategorii danych opracowanie wykazu jednostek pomiarowych sporządzenie opisu metod zbierania danych i metod obliczeń w odniesieniu do każdej kategorii danych przygotowanie instrukcji dotyczących miejsc zbierania danych PN-EN ISO 14041:2000

80 Przykład arkusza danych
PN-EN ISO 14041:2000

81 Przebieg obliczeń walidacja danych
przyporządkowanie do procesu jednostkowego przyporządkowanie do jednostki funkcjonalnej oraz agregacja danych korekta granic systemu PN-EN ISO 14041:2000

82 Przyporządkowanie do procesu jednostkowego
Walidacja danych Sprawdzanie wiarygodności i prawidłowości danych – bilans, porównania Przyporządkowanie do procesu jednostkowego Ilościowe dane procesu oblicza się w stosunku do strumienia odniesienia – 1 kg materiału lub 1 MJ energii PN-EN ISO 14041:2000

83 Przyporządkowanie do jednostki funkcjonalnej oraz agregacja danych
normalizacja strumieni wszystkich procesów jednostkowych w systemie poprzez odniesienie do jednostki funkcjonalnej (slide 37) agregację kategorii danych stosuje się w przypadkach równoważnych substancji i podobnych wpływów na środowisko PN-EN ISO 14041:2000

84 Za PKN-ISO/TR 14047:2006

85 Przyporządkowanie kilku wyników LCI do jednej kategorii
Kategoria wpływu Odnośne dane LCI Parametr charakteryzowa-nia Wartość wskaźnika Zmiana klimatu Dwutlenek węgla (CO2) Dwutlenek azotu (NO2) Metan (CH4) Chlorofluorokarbon (CFC) Hydrochlorofluorokarbon (HCFC) Bromekmetylu (CH3Br) Potencjał globalnego ocieplenia (kg równoważnego CO2/kg gazu) ekwiwalenty CO2 PN-EN ISO 14042:2000

86 Korekta granic systemu
Uściślenie granic systemu na podstawie wyników analizy wrażliwości Analiza wrażliwości procedura oceny wpływu zastosowanych metod i danych na rezultaty badania Wykorzystuje się analizę wrażliwości do: oceny istotności znaczenia poszczególnych etapów życia lub procesów jednostkowych i podejmowania decyzji ich wykluczenia lub pozostawienia w systemie wykluczenia nieistotnych wejść i wyjść włączenia nowych istotnych procesów jednostkowych oraz wejść i wyjść PN-EN ISO 14041:2000

87 Charakterystyczne cechy procesów przemysłowych:
wytwarzanie kilku wyrobów, wykorzystywanie wyrobów pośrednich lub surowców z recyklingu W ocenie cyklu życia systemu wyrobu: strumienie materiałów i energii oraz uwolnień do środowiska powinny być przyporządkowane do poszczególnych wyrobów zgodnie z jasno ustalonymi procedurami

88 Procedury przyporządkowywania wejść i wyjść nazywane są:
procedurami alokacji

89 Alokacja strumieni i uwolnień (6.5)
Przyporządkowanie strumieni i uwolnień do poszczególnych wyrobów (współwyrobów) Jaka część danych wspólnych jest przyporządkowana do danego wyrobu? PN-EN ISO 14049:2000

90 Zasady ogólne alokacji
unikanie alokacji albo jej minimalizowanie niepoddawanie alokacji procesów wspólnych, niezbędnych do wytworzenia wszystkich wyrobów PN-EN ISO 14041:2000

91 Przebieg procedury alokacji
Podjęcie działań zapobiegających alokacji poprzez: podział procesu jednostkowego na dwa lub więcej podprocesów (suma wejść i wyjść przed = sumie wejść i wyjść po) poszerzenie systemu wyrobu w celu włączenia funkcji dodatkowych związanych ze współwyrobami W przypadku konieczności dokonania alokacji: podział wejść i wyjść systemu na poszczególne wyroby w sposób odzwierciadlający zależności fizyczne podział wejść i wyjść systemu na poszczególne wyroby w sposób inny nie fizyczny, np. ekonomiczny 12.11 PN-EN ISO 14041:2000

92 Unikanie alokacji lub jej minimalizowanie
Proces mielenia przyporządkowany tylko produkcji mąki Procesy wcześniejsze przyporządkowane wszystkim wyrobom

93 Poszerzenie systemu wyrobu w celu włączenia funkcji dodatkowych związanych ze współwyrobami

94 Poszerzenie systemu wyrobu w celu włączenia funkcji dodatkowych związanych ze współwyrobami

95 Alokacja poprzez podział wejść i wyjść systemu na poszczególne wyroby w sposób odzwierciadlający zależności fizyczne

96 Alokacja poprzez podział wejść i wyjść systemu na poszczególne wyroby w sposób ekonomiczny

97 Narzędzia informatyczne LCA
Boustead Consulting Database and Software ECO-it: Eco-Indicator Tool for environmentally friendly design –PréConsultants EDIP-Environmental design of industrial products-Danish EPA EIOLCA-Economic Input-Output LCA At Karnegie Mellon University GaBi-ProductFamily (Ganzheitlichen Bilanzierung-holisticbalancing) - Five Winds International/University of Stuttgart (IKP)/PE Product Engineering GaBiLite GaBi4.2 GaBiDfX IDEMAT -Delft University CleanTechnology Institute Interduct Environmental Produkt Development KCL-ECO 3.0-KCL LCA software LCAiT-CIT EkoLogik(ChalmersIndustriteknik) SimaPro7 for Windows –PréConsultants TEAM(TM) (Tools for Environmental Analysis and Management) -Ecobalance, Inc. Umberto-Anadvanced software tool for Life Cycle Assessment-Institut für Umweltinformatik

98

99


Pobierz ppt "Tematyka poprzednich wykładów"

Podobne prezentacje


Reklamy Google