Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Energia na potrzeby oświetlenia część 1. Podstawy Źródła światła dzielimy na naturalne i sztuczne. Światło jest rodzajem energii elektromagnetycznej promienistej,

Podobne prezentacje


Prezentacja na temat: "Energia na potrzeby oświetlenia część 1. Podstawy Źródła światła dzielimy na naturalne i sztuczne. Światło jest rodzajem energii elektromagnetycznej promienistej,"— Zapis prezentacji:

1 Energia na potrzeby oświetlenia część 1

2 Podstawy Źródła światła dzielimy na naturalne i sztuczne. Światło jest rodzajem energii elektromagnetycznej promienistej, wysyłanej w formie bardzo małych dawek tzw. fotonów

3

4 Podstawowe wielkości oświetlenia strumień świetlny [lm], światłość I [cd], natężenie oświetlenia E [lx], luminancja L [cd/m2].

5 Strumień świetlny ΦΦ Parametr określający całkowitą moc światła emitowanego z danego źródła światła

6 Światłość Światłość - natężenie źródła światła w danym kierunku

7 Natężenie oświetlenia Gęstość strumienia świetlnego padającego na daną powierzchnięstrumienia świetlnego

8 Luminancja Luminancja – wielkość miary natężenia oświetlenia padającego w danym kierunku. Opisuje ilość światła, które przechodzi lub jest emitowane przez określoną powierzchnię. Jest to miara wrażenia wzrokowego, które odbiera oko ze świecącej powierzchni.natężenia oświetlenia

9

10 Natężenie oświetlenia Poziom 20 lx umożliwia zgrubne rozróżnienie cech twarzy i został przyjęty jako minimalny we wnętrzach Poziom 20 lx umożliwia zgrubne rozróżnienie cech twarzy i został przyjęty jako minimalny we wnętrzach Pozion 200 lx umożliwia rozróżnienie cech twarzy bez nadmiernego wysiłku, został przyjęty jako minimalny we wnętrzach gdzie przebywają ludzie dłużej i jest wykonywana praca Pozion 200 lx umożliwia rozróżnienie cech twarzy bez nadmiernego wysiłku, został przyjęty jako minimalny we wnętrzach gdzie przebywają ludzie dłużej i jest wykonywana praca Poziom 2000 lx został przyjęty jako optymalny ze względu na odczucia przyjemnościowe Poziom 2000 lx został przyjęty jako optymalny ze względu na odczucia przyjemnościowe Poziom lx wystąpi maksymalna czułość kontrastowa oka. Poziom lx wystąpi maksymalna czułość kontrastowa oka.

11 lx lx Oświetlenie naturalne

12 Oświetlenie sztuczne Poprawne oświetlenie to takie, które zapewnia wygodne widzenie Wygodne widzenie występuje gdy zdolność rozróżniania szczegółów jest pełna, spostrzeganie jest sprawne ale nie nadmiernie męczące Do zapewnienia wygodnego widzenia konieczne są: właściwy poziom natężenia oświetlenia PN-EN : 2004 właściwy poziom natężenia oświetlenia PN-EN : 2004 właściwa równomierność oświetlenia właściwa równomierność oświetlenia właściwy poziom ograniczenia olśnienia właściwy poziom ograniczenia olśnienia właściwy rozkład luminancji właściwy rozkład luminancji właściwa barwa światła właściwa barwa światła właściwy wspłczynnik oddawania barw właściwy wspłczynnik oddawania barw

13

14

15 Temperatura barwowa Linia ciągła - jest to obiektywna miara wrażenia barwy danego źródła światła, np.: 2000 K - barwa światła świeczki 2800 K - barwa bardzo ciepłobiała (żarówkowa) 3000 K - wschód i zachód słońca 4000 K - barwa biała 5000 K - barwa chłodnobiała 6500 K - barwa dzienna K - barwa czystego niebieskiego nieba K - błyskawica

16

17 Wpływ barwy światła na człowieka

18 Oświetlenie dynamiczne

19 Sprawność źródła światła (skuteczność źródła światła) [lm/W] jednostka skuteczności źródła światła = jaka część mocy elektrycznej pobranej przez źródło światła przetwarzana jest na strumień świetlny =F/P Im większa jest ta wartość, tym bardziej sprawne jest źródło światła. W związku z tą zależnością musimy jednak wziąć pod uwagę żywotność źródła światła.

20 Podstawowe parametry źródeł światła Moc znamionowa [W]- wartość mocy lampy przy zachowaniu określonych warunków pracy lampy. Trwałość absolutna – czas świecenia do chwili wygaśnięcia wskutek uszkodzenia Trwałość użyteczna - czas świecenia źródła światła do chwili, kiedy wartość jego strumienia świetlnego zmniejszy się o 20 ÷ 30% w stosunku do wartości początkowej Temperatura barwowa – określa kolor światła emitoanego przez źródło światła Współczynnik oddawania barw Ra- określa jak wiernie postrzegamy barwy oświetlonych przedmiotów

21 Porównanie źródeł światła Typ Moc W Strumień świetlny w lm Spr. Źródła światła lm/W Żywotność w godzinach Żarówka Żarówka Halogenowa niskonapięciowa Świetlówka kompaktowa Świetlówka Lampa rtęciowa Lampa sodowa HP Lampa sodowa LP LED

22 Żarówki tradycyjne ZALETY: produkcja żarówek o dowolnym produkcja żarówek o dowolnym napięciu znamionowym i dowolnej mocy znamionowej; zaświeca się od razu po włączeniu do zaświeca się od razu po włączeniu dosieci; bardzo dobre oddawanie barw bardzo dobre oddawanie barw nie wymaga dodatkowego stosowania nie wymaga dodatkowego stosowania przyrządów zapłonowych i statecznika. WADY: wrażliwość na wartość napięcia wrażliwość na wartość napięciazasilającego; krótka trwałość (około 1000 h); krótka trwałość (około 1000 h); niska skuteczność świetlna (8 – 21 niska skuteczność świetlna (8 – 21lm/W); duża energochłonność duża energochłonność

23 Żarówki halogenowe żarówki halogenowe w porównaniu z żarówkami tradycyjnymi charakteryzuje: większa skuteczność świetlna (18-33 lm/W); większa skuteczność świetlna (18-33 lm/W); mniejsze wymiary; mniejsze wymiary; wyższa trwałość (znamionowa trwałość wyższa trwałość (znamionowa trwałość ok 2000 h); wyższa temperatura barwowa wyższa temperatura barwowa ( K, barwy oświetlanych przedmiotów są bardziej nasycone); mały spadek strumienia świetlnego w okresie mały spadek strumienia świetlnego w okresieeksploatacji.

24 Świetlówki kompaktowe ZALETY: brak efektu stroboskopowego; brak efektu stroboskopowego; mogą być stosowane w mogą być stosowane w większości standartowych opraw oświetleniowych. jest produkowana w różnych jest produkowana w różnych temperaturach barwowych

25 Świetlówki liniowe Zalety Bardzo wysoki współczynnik oddawania barw Ra>90 Szerokie zastoswanie Równomierność oświetlenia Duży wachlarz mocowy Wady Mała odporność na niskie temperatury Mała odporność na niskie temperatury

26 Lampy rtęciowe wysokoprężne WADY: wpływ temperatury otoczenia na czas zapłonu; mały współczynnik oddawania barw; występowanie efektu stroboskopowego. niska skuteczność świetlna (60 lm/W) ZALETY: niska cena w porównaniu z innymi wysokociśnieniowymi lampami wyładowczymi; wysoka niezawodność i trwałość w porównaniu z żarówkami ( h);

27 Lampy sodowe wysokoprężne WADY: moc dostarczana do lampy może ulec zmianie wskutek zmiany napięcia zasilającego lampy niski współczynnik oddawania barw Ra~20 ZALETY: są mało wrażliwe na wahania temperatury otoczenia wysoka trwałość (20000 – h)

28 Lampy sodowe niskoprężne WADY: bardz niski współczynnik Ra bardzo ograniczone możliwości zastosowań długi czas zapłonu ZALETY wysoka skuteczność świetlna, nawet 200 lm/W !!!! długa żywotność

29 Lampy LED WADY: cena cena... ZALETY wysoka skuteczność świetlna (i wciąż rośnie), ekstremalnie długa żywotność (ok h) wysoki współczynnik oddawania barw odporna na zmiany temperatur

30 Pomiary wielkości świetlnych Pomiaru natężenia oświetlenia dokonuje się luksomierzem

31 Oprawy oświetleniowe i ich elementy

32 Zastosowanie opraw Oświetlenie uliczne użytkowe dekoracyjne iluminacyjne biurowe efekty świetlne informacyjne

33 OŚWIETLENIE AWARYJNE OŚWIETLENIE AWARYJNE EWAKUACYJNE OŚWIETLENIE ZAPASOWE OŚWIETLENIE DRÓG EWAKUACYJNYCH OŚWIETLENIE STREFY OTWARTEJ OŚWIETLENIE STREFY WYSOKIEGO RYZYKA Rodzaje oświetlenia awaryjnego (wg PN-EN [2 ])

34 ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY z dnia 6 listopada 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielna całość techniczno- użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej

35 Zapotrzebowanie na energię końcową na potrzeby oświetlenia EK, L= EL, j·Af, [kWh/rok] EL, j – roczne jednostkowe zapotrzebowanie na energię użytkową do oświetlenia [kWh/m2rok] Af – powierzchnia użytkowa [m2]

36 Roczne jednostkowe zapotrzebowanie na energię użytkową do oświetlenia EL,j= PN·FC/1000·[(tD · Fo · FD)+(tN · Fo)], [kWh/m2rok] PN – moc wszystkich zainstalowanych opraw oświetleniowych [W/m2] Fc – współczynnik uwzględniający regulację prowadzącą do utrzymania natężenia oświetlenia na wymaganym poziomie FD – współczynnik uwzględniający wykorzystanie światła dziennego w oświetleniu Fo – współczynnik uwzględniający nieobecności użytkowników w miejscu pracy tD – czas użytkowania oświetlenia w ciągu dnia [h] tN – czas użytkowania oświetlenia w nocy [h]

37 Średnia ważona moc jednostkowa oświetlenia budynku ocenianego PN=[Σ Pj· Afj )]/ Σ Af [W/m2] Pj – moc jednostkowa opraw oświetleniowych w j-tym pomieszczeniu [W/m2] Afj – powierzchnia użytkowa j-tego pomieszczenia

38

39 Roczne jednostkowe zapotrzebowanie na energię pierwotną do oświetlenia wbudowanego QP,L= wel · EK,L + wel · Eel, pom, L, [kWh/rok] EK,L – roczne zapotrzebowanie na energię końcową przez oświetlenie wbudowane [kWh/rok] Eel, pom, L– roczne zapotrzebowanie na energię elektryczną do napendu urządzeń pomocniczych systemu oświetlenia wbudowanego [kWh/rok] wel – współczynnik nakładu nieodnawialnej energii pierwotnej na dostarczenie nośnika energii (Tab.1, zał. 5)

40 Ocena oświetlenia elektrycznego obietku polega na: Inwentaryzacji odbiorników oświetleniowych w budynku i sprawdzenie ich skuteczności świetlnej; Sprawdzenie aktualnych aktów normatywnych dotyczących parametrów oświetleniowych w danym budynku; Pomiarze podstawowych wielkości świetlnych w budynku (natężenie oświetlenia, równomierność); Sprawdzenie w jakim stopniu oświetlenie dzienne jest wykorzystywane (znane są przypadki używania oświetlenia sztucznego pomimo,że oświetlenie dzienne wystarczałoby do zapewnienia wygody widzenia) Sprawdzenie sposobu sterowania oświetleniem.

41 Redukcję zużycia energii elektrycznej na cele oświetlenia obiektu można osiągnąć poprzez: Modernizację starego oświetlenia, Modernizację starego oświetlenia, Wprowadzenie systemów sterowania oświetleniem, Wykorzystanie w maksymalnym stopniu oświetlenia Wprowadzenie systemów sterowania oświetleniem, Wykorzystanie w maksymalnym stopniu oświetlenia dziennego, dziennego, Optymalizacje zapotrzebowania na energię instalacji Optymalizacje zapotrzebowania na energię instalacji oświetleniowej juz w fazie projektowania, oświetleniowej juz w fazie projektowania, Podniesienie świadomości ekologicznej użytkowników obiektu, Dodatkowo w celu optymalizacji kosztów utrzymania oświetlenia należy rozważyć możliwość grupowych wymian żródeł światła w określonym czasookresie

42 Dziękuję za uwagę


Pobierz ppt "Energia na potrzeby oświetlenia część 1. Podstawy Źródła światła dzielimy na naturalne i sztuczne. Światło jest rodzajem energii elektromagnetycznej promienistej,"

Podobne prezentacje


Reklamy Google