Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Elementy fizyki jądrowej Wykład 1. dr Dorota Wierzuchowska,

Podobne prezentacje


Prezentacja na temat: "Elementy fizyki jądrowej Wykład 1. dr Dorota Wierzuchowska,"— Zapis prezentacji:

1 Elementy fizyki jądrowej Wykład 1. dr Dorota Wierzuchowska,

2 FIZYKA Fizyka jest podstawą wszystkich nauk przyrodniczych. Jest nauką o właściwościach materii i o zjawiskach zachodzących w przyrodzie. Bada fundamentalne i uniwersalne właściwości materii, ogólne prawa, którym podlega przebieg wszelkich procesów. Fizyka (z gr. φύσις physis - "natura") jako nauka o przyrodzie w najszerszym znaczeniu tego słowa jest podstawą wszystkich nauk przyrodniczych. Jest nauką o właściwościach materii i o zjawiskach zachodzących w przyrodzie. Bada fundamentalne i uniwersalne właściwości materii, ogólne prawa, którym podlega przebieg wszelkich procesów.gr

3 FIZYKA Fizycy badają właściwości i przemiany materii i energii oraz oddziaływanie między nimi. Do opisu zjawisk fizycznych używają wielkości fizycznych, wyrażonych za pomocą pojęć matematycznych, takich jak liczba, wektor, tensor. Tworząc hipotezy i teorie fizyki, budują relacje pomiędzy wielkościami fizycznymi. Fizyka wyjaśnia podstawowe zależności występujące w przyrodzie.pojęćliczbawektor tensorhipotezyteorie relacje

4 Wielki Wybuch- BIG BANG G.Gamow, R.Alpher 1947 model powstania Wszechświata uznawany za najbardziej prawdopodobny Według tego modelu ok. 13,73 mld lat temu dokonał się Wielki Wybuch - z bardzo gęstej i gorącej osobliwości początkowej wyłonił się Wszechświat (przestrzeń, czas, materia, energia i oddziaływania).przestrzeń czasmateriaenergia oddziaływania

5 Pierwsze sekundy życia Wszechświata w chwili narodzin Wszechświat, przy ogromnej temperaturze kelwinów, był dziesięciowymiarowym tworem, w którym zjednoczone były wszystkie oddziaływania i istniała jedna wielka symetria GUT. kelwinówGUT Świat ten był jednak niestabilny i po sekundy rozpadł się na cztero- i sześciowymiarowy. Sześciowymiarowy zapadł się do rozmiaru centymetra, a nasz czterowymiarowy, początkowo o gęstości kg/m 3 zaczął się gwałtownie rozszerzać.czterowymiarowy

6 Po sekundy silne oddziaływania oddzieliły się od elektrosłabych, a niewielki fragment większego wszechświata rozszerzył się razy, stając się ostatecznie naszym widzialnym Wszechświatem. Takie gwałtowne rozszerzenie opisywane jest przez teorię inflacji kosmologicznej.silne oddziaływania elektrosłabych inflacji kosmologicznej Po upływie dalszego ułamka sekundy oddziaływania elektrosłabe rozpadły się na elektromagnetyczne i słabe, a następnie, pod koniec pierwszej sekundy, gdy temperatura spadła już do kelwinów, kwarki zaczęły się łączyć w protony i neutrony i Wszechswiat zbudowany był już z materii (pod postacią plazmy) niewiele różniącej się od obecnie występującej (tworzyły ją protony, neutrony, elektrony, neutrina i fotony). Po ok. 100 s od chwili początkowej zaczęły powstawać jądra złożone (deuter).elektromagnetycznesłabekwarkiprotonyneutronyprotonyneutronyelektronyneutrinafotonydeuter

7 Dowody potwierdzające teorię Wielkiego Wybuchu Za hipotezą Wielkiego Wybuchu przemawia wiele danych doświadczalnych - przede wszystkim istnienie praktycznie jednorodnego mikrofalowego promieniowania tła (reliktowe promieniowanie) oraz ciągłe rozszerzanie się wszechświata (przesunięcie ku czerwieni, prawo Hubblea).reliktowe promieniowanieprzesunięcie ku czerwieniprawo Hubblea

8 Reliktowe promieniowanie, mikrofalowe promieniowanie tła izotropowe promieniowanie cieplne wszechświata. Promieniowanie reliktowe jest pozostałością po wysokoenergetycznych kwantach gamma wypełniających wczesny Wszechświat wg modelu Wielkiego Wybuchu. Ze względu na znaczną wartość przesunięcia ku czerwieni, energia tych fotonów odpowiada dziś promieniowaniu ciała doskonale czarnego o temperaturze 2,7 K (leży w zakresie mikrofal, maksimum rozkładu odpowiada długości fali 0,1 cm). Istnienie promieniowania reliktowego przewidywał G.A. Gamow oraz astrofizycy amerykańscy z Princeton R.H. Dicke i P.J.E. Peebles, przypadkowo odkryli je A. Penzias i R.W. Wilson (1965, Nagroda Nobla 1978).promieniowanie cieplnewszechświatakwantach gammaprzesunięcia ku czerwienifotonówciała doskonale czarnegomikrofalG.A. GamowA. PenziasR.W. WilsonNagroda Nobla

9 Przesunięcie ku czerwieni- z zjawisko obserwowanej doświadczalnie zmiany położenia linii widmowych w widmach elektromagnetycznych odległych obiektów astronomicznych. Zmiana położenia polega na proporcjonalnym przesunięciu z = Δλ/λ całego widma w kierunku dłuższych fal, co dla światła oznacza przesunięcie w kierunku czerwonej części widma (stąd nazwa).linii widmowychwidmach Przesunięcie ku czerwieni interpretowane jest jako efekt Dopplera dla fal rozchodzących się w rozszerzającym się wszechświecie (Hubblea prawo).efekt DopplerawszechświecieHubblea prawo

10 Najdalsza zaobserwowana galaktyka widoczna jako blado czerwona smuga. Posiada ona największe przesunięcie ku czerwieni (z = 4,92), jej obraz został zniekształcony poprzez oddziaływanie grawitacyjne pobliskich galaktyk. Zdjęcie z kosmicznego teleskopu Hubble'a. Autor: NASA

11 Typowe odległości we Wszechświecie Jądro atomowe Atom Człowiek Średnica Ziemi Odległość Ziemia-Słońce Rok świetlny Wszechświat Rozmiar [m]

12 Siły działające w przyrodzie Siła jest to wielkość fizyczna, opisująca wzajemne oddziaływania ciał między sobą. Siłę poznajemy po skutkach jej działania. Siła może spowodować zmianę ruchu (pędu) ciała lub spowodować jego odkształcenie. Źródłem każdej siły rzeczywistej jest ciało materialne. Siła jest to wielkość fizyczna, opisująca wzajemne oddziaływania ciał między sobą. Siłę poznajemy po skutkach jej działania. Siła może spowodować zmianę ruchu (pędu) ciała lub spowodować jego odkształcenie. Źródłem każdej siły rzeczywistej jest ciało materialne.

13 Wszystkie znane oddziaływania można sprowadzić do czterech podstawowych (fundamentalnych). Wszystkie znane oddziaływania można sprowadzić do czterech podstawowych (fundamentalnych). Są to oddziaływania: grawitacyjne, elektromagnetyczne, Są to oddziaływania: grawitacyjne, elektromagnetyczne, słabe, słabe, silne (jądrowe). silne (jądrowe).

14 Oddziaływania grawitacyjne Wszystkie ciała materialne (masy) wzajemnie się przyciągają. Wszystkie ciała materialne (masy) wzajemnie się przyciągają. Siły grawitacyjne wiążą gwiazdy w galaktyki, Słońce i planety w Układ Słoneczny, utrzymują Ziemię jako całość. Siły grawitacji są najsłabsze ze wszystkich oddziaływań i są siłami długozasięgowymi. Opisane są przez prawo powszechnego ciążenia. Siły grawitacyjne wiążą gwiazdy w galaktyki, Słońce i planety w Układ Słoneczny, utrzymują Ziemię jako całość. Siły grawitacji są najsłabsze ze wszystkich oddziaływań i są siłami długozasięgowymi. Opisane są przez prawo powszechnego ciążenia.

15 Prawo powszechnego ciążenia Dwa punkty materialne o masach (grawitacyjnych) m i M przyciągają się wzajemnie siłą grawitacji F g wprost proporcjonalną do iloczynu mas i odwrotnie proporcjonalną do kwadratu odległości r między punktami. Dwa punkty materialne o masach (grawitacyjnych) m i M przyciągają się wzajemnie siłą grawitacji F g wprost proporcjonalną do iloczynu mas i odwrotnie proporcjonalną do kwadratu odległości r między punktami. G jest stałą grawitacji, Znak - oznacza, że wektor F g ma zwrot przeciwny do wektora r (siła grawitacji jest zawsze siłą przyciągającą) G jest stałą grawitacji, Znak - oznacza, że wektor F g ma zwrot przeciwny do wektora r (siła grawitacji jest zawsze siłą przyciągającą)

16 Oddziaływania elektromagnetyczne Są to oddziaływania między ładunkami znajdującymi się w spoczynku lub w ruchu. Ładunki różnoimienne przyciągają się, a jednoimienne odpychają się. Są to oddziaływania między ładunkami znajdującymi się w spoczynku lub w ruchu. Ładunki różnoimienne przyciągają się, a jednoimienne odpychają się. Siły elektromagnetyczne wiążą elektrony w atomach, atomy w cząsteczkach, cząsteczki w ciałach makroskopowych; odgrywają dominująca rolę w takich zjawiskach jak tarcie, spójność, sprężystość. Są siłami długozasięgowymi. Siły elektromagnetyczne wiążą elektrony w atomach, atomy w cząsteczkach, cząsteczki w ciałach makroskopowych; odgrywają dominująca rolę w takich zjawiskach jak tarcie, spójność, sprężystość. Są siłami długozasięgowymi.

17 Prawo Coulomba Dwa punktowe i nieruchome ładunki elektryczne q i Q działają na siebie siłą wprost proporcjonalną do iloczynu tych ładunków, a odwrotnie proporcjonalną do kwadratu odległości r między nimi: Dwa punktowe i nieruchome ładunki elektryczne q i Q działają na siebie siłą wprost proporcjonalną do iloczynu tych ładunków, a odwrotnie proporcjonalną do kwadratu odległości r między nimi: jest przenikalnością elektryczną próżni jest przenikalnością elektryczną próżni

18 Siła magnetyczna Na ładunek poruszający się względem innych poruszających się ładunków (np. prądu elektrycznego) działa (niezależnie od siły elektrycznej) siła prostopadła do jego prędkości. Na ładunek poruszający się względem innych poruszających się ładunków (np. prądu elektrycznego) działa (niezależnie od siły elektrycznej) siła prostopadła do jego prędkości. Wektor B jest to indukcja pola magnetycznego. Wektor B jest to indukcja pola magnetycznego.

19 Oddziaływania słabe Są odpowiedzialne za rozpad jąder promieniotwórczych i za rozpad wielu cząstek elementarnych występujących w przyrodzie. Są odpowiedzialne za rozpad jąder promieniotwórczych i za rozpad wielu cząstek elementarnych występujących w przyrodzie. Oddziaływania krótkozasięgowe, na odległości rzędu m. Nie tworzą układów związanych. Oddziaływania krótkozasięgowe, na odległości rzędu m. Nie tworzą układów związanych.

20 Oddziaływania silne Wiążą ze sobą m. in. nukleony w jądrze atomowym. Oddziaływania o bardzo małym zasięgu działania. Najsilniejsze ze wszystkich oddziaływań, większe o: Wiążą ze sobą m. in. nukleony w jądrze atomowym. Oddziaływania o bardzo małym zasięgu działania. Najsilniejsze ze wszystkich oddziaływań, większe o: 2 rzędy wielkości od elektromagnetycznych 2 rzędy wielkości od elektromagnetycznych 5 rzędów od słabych, 5 rzędów od słabych, 40 rzędów od grawitacyjnych. 40 rzędów od grawitacyjnych.

21 Siły jądrowe Mają krótki zasięg, do 2x m, dla odległości mniejszych niż m są siłami odpychającymi, powyżej-przyciągającymi. Nie są centralne, zależą również od orientacji spinów Mają właściwość wysycania Wielkość tych sił prawie nie zależy od ładunku

22 Pola sił Siły, z którymi się spotykamy działają w określonej przestrzeni. Na ciało umieszczone w dowolnym punkcie tej przestrzeni działają określone siły. Obszar, w którym w każdym punkcie określona jest siła działająca na ciało, nazywamy polem sił. Każda cząstka wytwarza wokół siebie pole i poprzez to pole oddziałuje na inne cząstki. Masy wytwarzają wokół siebie pole grawitacyjne, a ładunki pola elektromagnetyczne. Siły, z którymi się spotykamy działają w określonej przestrzeni. Na ciało umieszczone w dowolnym punkcie tej przestrzeni działają określone siły. Obszar, w którym w każdym punkcie określona jest siła działająca na ciało, nazywamy polem sił. Każda cząstka wytwarza wokół siebie pole i poprzez to pole oddziałuje na inne cząstki. Masy wytwarzają wokół siebie pole grawitacyjne, a ładunki pola elektromagnetyczne.

23 GUT- Grand Unified Theory teoria wielkiej unifikacji teoria scalająca oddziaływania elektrosłabe (unifikacja mała) i oddziaływanie silne. Przy dużych energiach rzędu 1015 GeV wszystkie rodzaje oddziaływania mikrocząstek (bez grawitacji) nie różnię się od siebie.unifikacja małaoddziaływanie silnegrawitacji Niekiedy mianem unifikacji wielkiej określa się nie istniejącą obecnie teorię jednoczącą wszystkie oddziaływania fizyczne (wraz z grawitacją), teoria taka, określana też jako "teoria wszystkiego" (z angielskiego theory of everything: TOE), odnosiłaby się do energii większych razy od 1015 GeV (masa Plancka) oddziaływania fizycznemasa Plancka

24 Cząstki elementarne Cząstki będące podstawowym budulcem materii, czyli najmniejszymi, niepodzielnymi i nieposiadającymi wewnętrznej struktury.struktury

25 Elektronowolt Elektronowolt (eV) – jednostka energii stosowana w fizyce. Jeden elektronowolt jest to energia, jaką uzyskuje elektron będąc przyspieszonym różnicą potencjałów równą 1 woltowi: 1eV=1e · 1V 1, × J 1 J 6, (53) ×10 18 eV

26 SPIN Spin jest to własny, nie wynikający z ruchu danej cząstki względem innych cząstek, lecz tylko z samej natury tej cząstki, moment pędu w układzie, w którym ona spoczywa. Dla elektronu, protonu czy neutronu liczba ta jest oznaczana symbolem "s" i może przyjmować wartość ułamkową ½.

27 Nośniki oddziaływań Wg. teorii kwantowych oddziaływania są przenoszone przez cząstki o spinie całkowitym zwane nośnikami lub kwantami oddziaływań. Oddziaływania elementarne przenoszone są przez cząstki rzeczywiste:teorii kwantowychoddziaływaniacząstki elektromagnetyczne-kwanty gamma o zerowej masie słabe- bozony pośredniczące o masie sto razy większej od masy protonu silne- gluony grawitacyjne- nie odkryte jeszcze grawitony z polem Higgsa- boskie cząstki Higgsa

28 Cząstki materii Leptony o spinie połówkowym NIE uczestniczące w oddziaływaniach silnych np. elektron, neutrina, Hadrony oddziałujące silnie (np. proton, neutron), o spinie połówkowym są barionami, a piony (+,-,0) o spinie całkowitym są mezonami.

29 Hadrony Hadrony składają się z kwarków (6 różnych) i antykwarków. W zakresie niskich i średnich energii nie ma potrzeby uwzględniania struktury hadronów, można je wiec uważać za elementarne. W odróżnieniu od nich kwarki są cząstkami fundamentalnymi.

30 Kwarki Są fermionami, mają spin połówkowy Mają ułamkowy ładunek elektryczny Nie występują pojedynczo- są uwiązane

31 Cząstki Higgsa zgodnie z Modelem Standardowym, cząstki występujące w przyrodzie - kwarki i leptony - posiadają masę dzięki oddziaływaniu z polem Higgsa, jakby rodzajem "oporów ruchu", którego nośnikami są bozony Higgsa.kwarki leptonymasę jeżeli cząstka Higgsa istnieje, to jej energia przekracza 114 GeV.GeV

32

33 Proton Przyjmuje się, że proton posiada elementarny, dodatni ładunek elektryczny i masę atomową równą 1, zapisywany jako +p1 lub H +. ładunek elektryczny Masa spoczynkowa: m p = 1, (29) x kg = 938,272029(80) MeV/c² = 1, u MeVcu Spin: 1/2 Spin Samotny proton to jądro 1 H, proton związany z neutronem to jądro deuteru - ²H (deuteron). Liczba protonów w jądrze danego atomu to jego liczba atomowa, 1 H neutronemdeuteruliczba atomowa

34 Neutron Neutron (z łac neuter "obojętny" ) jest obojętny elektrycznie. masa spoczynkowa wynosi ok. 1, u, czyli 1, x kg (jest nieco większa od masy protonu). Spin: 1/2 Spin Neutrony występujące poza jądrem nie są stabilne, ale rozpadają się bardzo wolno (jak na cząstkę subatomową), jego średni czas życia to 885,7 s (ok. 15 min.):średni czas życia Według tego schematu zachodzi rozpad promieniotwórczy "beta".

35 Jądro atomowe Jest układem nukleonów- protonów i neutronów. Liczba protonów określa ładunek elektryczny jądra, decyduje o tym jakiego pierwiastka chemicznego jest to atom i o przebiegu reakcji chemicznych.pierwiastka chemicznegoreakcji chemicznych Liczba neutronów ma pewien wpływ na przebieg reakcji chemicznych poprzez tzw. efekt izotopowy, różne izotopy tego samego pierwiastka mają nieco inne własności chemiczne i fizyczne.efekt izotopowy

36 Jądro atomowe z X A –liczba nukleonów w jądrze Z –liczba protonów w jądrze

37 Tabela nuklidów przedstawia graficznie wszystkie znane nuklidy (jądra atomowe) o określonej liczbie protonów i neutronów.znane nuklidy Izotopy-atomy danego pierwiastka różniące się liczbami masowymi. Izobary-atomy o tej samej liczbie masowej Izotony-atomy o tej samej liczbie neutronów Izomery- atomy o identycznej liczbie protonów i neutronów, jednakże różniące się stanem kwantowymstanem kwantowym

38

39 Modele jądrowe Kroplowy-jądra są kuliste jak krople cieczy, nukleony w jądrze zachowują się jak cząsteczki w cieczy. Powłokowy-nukleony wewnątrz jądra mogą przyjmować tylko stany energetyczne zgodne z energiami kolejnych powłok. Kolektywny-nukleony łączą się w grupy tworząc nowe cząstki wewnątrz jądra

40 Deficyt masy Deficyt masy (niedobór masy, defekt masy) - różnica Δm między sumą mas nukleonów wchodzących w skład jądra atomowego, a masą jądra. Iloczyn niedoboru masy i kwadratu prędkości światła w próżni jest równy energii wiązania jądraenergii wiązania jądra ΔE= Δm c 2 = {[Zm p + (A-Z)m n ]-m j }c 2 gdzie: nuklid zawierający N neutron ó w i Z proton ó w (N+Z = A) nuklid m p =1, masa protonu w jednostkach masy atomowejprotonujednostkach masy atomowej m n =1, masa neutronuneutronu m j - masa jądra nuklidu c = 3 · 108 m/s - prędkość światła w pr ó żni

41 Energia wiązania

42 Reakcje jądrowe Reakcja fuzji termojądrowej, jądra deuteru i trytu łączą się, powstaje jądro helu, neutron i wydzielana jest energia.

43 Promieniotwórczość Reakcje jądrowe spontaniczne- promieniotw ó rczość naturalna Reakcje jądrowe wymuszone- promieniotw ó rczość sztuczna

44 Prawo rozpadu promieniotwórczego Dla każdego jądra promieniotwórczego istnieje określone prawdopodobieństwo, że ulegnie ono przemianie promieniotwórczej w danym czasie. Liczba atomów dN, które rozpadną się w ciągu krótkiego czasu dt wynosi: dN=- N dt Jeżeli N o to liczba atomów w chwili t=0, to po czasie t pozostanie N atomów jakie się nie rozpadły N(t)= N o e - t

45 Okres połowicznego rozpadu Jest to czas T po jakim rozpadnie się połowa jąder istniejących w chwili czasu t=0. N o /2= N o e - T T=ln2/ T zawiera się w granicach od 3x10 -7 s do 1,4x10 27 lat

46 Aktywność A Aktywność jest to liczba przemian jądrowych N zachodzących w czasie t A= N/ t Jednostką aktywności w układzie SI jest jeden bekerel -Bq. Aktywność 1Bq ma preparat w którym zachodzi w czasie 1 sekundy jeden rozpad promieniotwórczy

47 Rozpad alfa Rozpad alfa (przemiana α) - przemiana jądrowa, w kt ó rej emitowana jest cząstka α (jądro helu 4 2 He 2+ ). Strumień emitowanych cząstek alfa przez rozpadające się jądra to promieniowanie alfa. W wyniku tej reakcji powstające jądro ma liczbę atomową mniejszą o 2, a liczbę masową o 4 od rozpadającego się jądra. przemiana jądrowacząstka αhelupromieniowanie alfaliczbę atomową liczbę masową

48 Rozpad beta Rozpad beta to przemiana nukleonu w inny nukleon, zachodząca pod wpływem oddziaływania słabego. Wyróżniamy następujące rodzaje tego rozpadu: rozpad β (beta minus) rozpad β + (beta plus) wychwyt K.

49 Rozpad beta minus Rozpad β - - polega na przemianie neutronu w proton z emisją elektronu i antyneutrina elektronowego według schematu:

50 Rozpad beta plus Rozpad β polega na przemianie protonu w neutron z emisją pozytonu i neutrina elektronowego według schematu:

51 Wychwyt K Wychwyt elektronu - przemiana jądrowa, w której jeden z elektronów atomu jest przechwytywany przez proton z jądra atomowego, w wyniku czego powstaje neutron (pozostający w jądrze) i neutrino elektronowe, które jest emitowane.

52 Promieniowanie gamma Promieniowanie gamma to wysokoenergetyczna forma promieniowania elektromagnetycznego powstające w wyniku przemian jądrowych, o energii kwantu większej od 10 keV, co odpowiada częstotliwości większej od 2,42EHz (eksaherc herca), a długości fali mniejszej od 124 pm, jonizujące i przenikliwe. Zakres ten częściowo pokrywa się z zakresem promieniowania rentgenowskiego.

53 Przenikliwość promieniowania

54 Promieniowanie jonizujące wszystkie rodzaje promieniowania, które wywołują jonizację ośrodka materialnego, tj. oderwanie przynajmniej jednego elektronu od atomu lub cząsteczki albo wybicie go ze struktury krystalicznej. Promieniowania alfa, beta, gamma oraz promieniowanie elektromagnetyczne o energii większej od energii światła widzialnego.

55 Oddziaływanie promieniowania elektromagnetycznego z materią Jonizacja Wzbudzenie optyczne (fluorescencja i fosforescencja) wtórne rentgenowskie promieniowanie charakterystyczne Zjawisko fotoelektryczne zewnętrzne i wewnętrzne Zjawisko Comptona Rozpraszanie Tworzenie par

56 Oddziaływanie promieniowania korpuskularnego z materią Cząstki naładowane: Jonizacja bezpośrednia poprzez oddziaływania kulombowskie Wzbudzenie optyczne i rentgenowskie Cząstki nienaładowane: Jonizacja wtórna Powstawanie jonizujących jąder odrzutu Zapoczątkowanie reakcji rozszczepienia, rozpraszanie niesprężyste, wychwyt

57 Wielki Zderzacz Hadronów Large Hadron Collider największy na świecie akcelerator cząstek (hadronów), znajdujący się w Europejskim Ośrodku Badań Jądrowych CERN w pobliżu Genewy.akcelerator cząstekhadronówCERNGenewy Przewiduje się, że LHC umożliwi odkrycie bozonu Higgsa, który uczestniczy w nadawaniu mas cząstkom elementarnym, oraz cząstek tworzących ciemną materię, którymi być może będą cząstki supersymetryczne.bozonu Higgsamas cząstkom elementarnym ciemną materię supersymetryczne

58 Komputerowa symulacjaKomputerowa symulacja wyniku zderzenia cząstek.


Pobierz ppt "Elementy fizyki jądrowej Wykład 1. dr Dorota Wierzuchowska,"

Podobne prezentacje


Reklamy Google