Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Procesor Architektura.

Podobne prezentacje


Prezentacja na temat: "Procesor Architektura."— Zapis prezentacji:

1 Procesor Architektura

2 Procesor (ang. processor) nazywany często CPU (ang
Procesor (ang. processor) nazywany często CPU (ang. Central Processing Unit) urządzenie cyfrowe sekwencyjne potrafiące pobierać dane z pamięci, interpretować je i wykonywać jako rozkazy. Wykonuje on bardzo szybko ciąg prostych operacji (rozkazów) wybranych ze zbioru operacji podstawowych określonych zazwyczaj przez producenta procesora jako lista rozkazów procesora.

3 Budowa procesora Mikroprocesor jest to arytmetyczno-logiczna jednostka centralna komputera. Termin mikroprocesor został użyty po raz pierwszy w 1972 r., jednakże "era" mikroprocesorów rozpoczęła się w 1971 r. wraz z wprowadzeniem przez firmę Intel układu mikroprogramowalnego komputera jednoukładowego. W układzie tym umieszczono 4 bitowy sumator, 16 czterobitowych rejestrów, akumulator i stos, czyli podstawowe podzespoły jednostki centralnej systemu komputerowego. Układ 4004, składający się z 2300 tranzystorów, mógł wykonywać 445 różnych instrukcji, przy czym architektura była zbliżona do układów kalkulatorowych.

4 Współczesne procesory (zwane mikroprocesorami) wykonywane są zwykle
jako układy scalone zamknięte w hermetycznej obudowie, często posiadającej złocone wyprowadzenia (stosowane ze względu na własności stykowe tego metalu). Ich sercem jest monokryształ krzemu, na który naniesiono techniką fotolitografii szereg warstw półprzewodnikowych, tworzących, w zależności od zastosowania, sieć od kilku tysięcy do kilkuset milionów tranzystorów. Połączenia wykonane są z metalu (aluminium, miedź). Ważnym parametrem procesora jest rozmiar elementów budujących jego strukturę. Im są one mniejsze tym niższe jest zużycie energii, napięcie pracy oraz wyższa częstotliwość pracy.

5 Producenci procesorów
IBM/Cyrix/VIA TEXAS Instruments

6 Proszę zapoznać się i wypisać kilka najpopularniejszych procesorów z firm:
AMD Intel

7 ALU?! Jednostka arytmetyczno-logiczna
(ang. Arithmetic and Logical Unit lub Arithmetic Logic Unit) to jedna z głównych części procesora, prowadząca proste operacje na liczbach całkowitych. Typowy symbol ALU: A i B - operandy; R - wyjście; F - wejście z jednostki kontrolnej; D - status wyjścia

8 operacje logiczne AND, OR, NOT, XOR dodawanie
Typowe ALU ma dwa wejścia odpowiadające parze argumentów i jedno wyjście na wynik. Operacje jakie prowadzi to: operacje logiczne AND, OR, NOT, XOR dodawanie często też, odejmowanie, negacja liczby, dodawanie z przeniesieniem, zwiększanie/zmniejszanie o 1 przesunięcia bitowe o stałą liczbę bitów, czasem też o zmienną liczbę dość często mnożenie i czasem dzielenie/modulo Wiele innych układów może mieścić w sobie ALU: GPU (jednostka przetwarzania graficznego) – np. karty graficzne - FPU (jednostka obliczeń zmienno-przecinkowych) – np. karty muzyczne

9 Zasada działania Ze względu na przepływ danych i rozkazów w procesorze, można wyróżnić w nim kilka zasadniczych modułów: Blok wstępnego pobierania i dekodowania instrukcji. Odpowiada on za dostarczenie kolejnych poleceń z pamięci operacyjnej i przekazanie ich do odpowiedniej jednostki wykonawczej. Główny blok wykonawczy to jednostka arytmetyczno-logiczna ALU. Zapewnia ona prawidłowe przetworzenie wszystkich danych stałoprzecinkowych. ALU wyposażony jest w niewielka zintegrowana pamięć, nazywana zestawem rejestrów. Każdy rejestr to pojedyncza komórka używana do chwilowego przechowywania danych i wyników.

10 FPU, czyli koprocesor wykonujacy wszystkie obliczenia
zmiennoprzecinkowe Po zakończeniu "obliczeń" dane będące wynikiem przetwarzania trafiają do modułu wyjściowego procesora. Jego zadaniem jest przekierowanie nadchodzących informacji np. do odpowiedniego adresu w pamięci operacyjnej lub urządzenia wejścia/wyjścia.

11 Cache procesorów Cache (pamięć podręczna) to mechanizm, w którym ostatnio pobierane dane dostępne ze źródła o wysokiej latencji* i niższej przepustowości są przechowywane w pamięci o lepszych parametrach. L3 wykorzystywana w procesorach 2 i 4 rdzeniowych Listy rozkazów * Latencja – okres utajenia, czas od wystąpienia przyczyny do zaistnienia skutku.

12 Pamięć cache przyspiesza dostęp do relatywnie wolnej pamięci RAM.
Charakteryzuje się bardzo krótkim czasem dostępu. Jest używana do przechowywania danych, które będą w niedługim czasie przetwarzane. Na współczesnych procesorach są 2 lub 3 poziomy pamięci cache: L1 (zintegrowana z procesorem), L2 i L3 (umieszczone w jednym chipie razem z procesorem, lub na płycie głównej).

13 L-1 – zlokalizowana we wnętrzu procesora pamięć podręczna pierwszego
poziomu. Przyspiesza dostęp do bloków pamięci wyższego poziomu, który stanowi zależnie od konstrukcji pamięć operacyjną lub pamięć podręczną drugiego poziomu (L2). Z uwagi na ograniczenia rozmiarów i mocy procesora zawsze jest najmniejsza. Umieszczona jest najbliżej głównego jądra procesora i umożliwia najszybszą komunikację procesora.

14 L2 – wykorzystywana w procesorze pamięć podręczna drugiego
poziomu, zbudowana z modułów pamięci typu SRAM, umieszczona często bezpośrednio na jądrze procesora. Pamięć drugiego poziomu jest wykorzystywana gdy pamięć zajęta jest pamięć pierwszego poziomu. Na bardzo starych procesorach była tylko pamięć poziomu pierwszego (pentium mmx i podobne). Pamięć drugiego poziomu pozwala na potężny wzrost wydajności w wielu aplikacjach i programach. Kiedy zaczyna brakować pamięci na drugim poziomie, komputer szuka "pomocy" w pamięci RAM, jednak to znacząco spowalnia pracę komputera.

15 Podział gniazd procesorów
slot – wyglądem przypomina sloty ISA, PCI i AGP socket – poziomo położona prostokątna płytka, zawierająca dziurki na piny procesora lub piny, na które wkłada się procesor Istnieje jeszcze wiele innych gniazd, które jednak są już nie stosowane.

16 Gniazda procesów INTEL
Socket 7 (Super Socket 7) Intel Pentium, Intel Pentium MMX, AMD K5, K6-2,2+,III, Cyrix M1, M2, Winchip Socket 8 Intel Pentium Pro

17 Slot 1 Intel Pentium II, III Celeron 266-433Mhz
                     Socket 370 Intel Pentium III, Intel Celeron, Intel Celeron II, VIA Cyrix III

18 Socket 423 Intel Pentium 4 (1300-2000 MHz)
Socket 478 Intel Pentium 4 ( MHz) Intel Pentium 4 ( MHz)

19 Socket A AMD Athlon, AMD Athlon XP, AMD Duron
Gniazda procesów AMD Slot A AMD Athlon                                       Socket A AMD Athlon, AMD Athlon XP, AMD Duron

20 Obecnie używane gniazda pod procesory na płytach głównych:
Sockety firmy Intel: Socket Intel Pentium 4, Celeron, Pentium 4 Extreme Edition, Pentium M Socket N Socket Intel Pentium M i Celeron M LGA 775 (Socket 775 lub Socket T) - Intel Pentium 4, Pentium D, Celeron D, Pentium Extreme Edition, Core 2 Duo, Core 2 Extreme, Celeron, Xeon 3000 series, Core 2 Quad; (LGA 775). Sockety firmy AMD: Socket Athlon 64, Sempron, Turion 64 Socket Athlon 64, Sempron Socket Athlon 64, Opteron Dla ciekawskich

21 Architektura procesorów
CISC (Complex Instruction Set Computers) – nazwa architektury mikroprocesorów o następujących cechach: duża liczba rozkazów (instrukcji) mała optymalizacja – niektóre rozkazy potrzebują dużej liczby cykli procesora do wykonania występowanie złożonych, specjalistycznych rozkazów duża liczba trybów adresowania do pamięci może się odwoływać bezpośrednio duża liczba rozkazów mniejsza od RISC-ów częstotliwość taktowania procesora powolne działanie dekodera rozkazów

22 RISC (Reduced Instruction Set Computers)
nazwa architektury mikroprocesorów która została przedstawiona pod koniec lat 70. w teoretycznych pracach na uniwersytecie Berkeley oraz w wynikach badań Johna Cocke z Thomas J. Watson Research Center. Bardziej wydajny od CISC Podstawowe cechy Zredukowana liczba rozkazów do niezbędnego minimum. Ich liczba wynosi kilkadziesiąt, podczas gdy w procesorach CISC sięga setek. Upraszcza to znacznie dekoder rozkazów.

23 Redukcja trybów adresowania, dzięki czemu kody rozkazów są prostsze,
bardziej zunifikowane, co dodatkowo upraszcza wspomniany wcześniej dekoder rozkazów. Ponadto wprowadzono tryb adresowania, który ogranicza ilość przesłań - większość operacji wykonuje się wg schematu:                                                         Ograniczenie komunikacji pomiędzy pamięcią, a procesorem. Przede wszystkim do przesyłania danych pomiędzy pamięcią, a rejestrami służą dedykowane instrukcje, które zwykle nazywają się load (załaduj z pamięci), oraz store (zapisz do pamięci); pozostałe instrukcje mogą operować wyłącznie na rejestrach. Schemat działania na liczbach znajdujących się w pamięci jest następujący: załaduj daną z pamięci do rejestru, na zawartości rejestru wykonaj działanie, przepisz wynik z rejestru do pamięci.

24 Zwiększenie liczby rejestrów (np. 32, 192, 256, podczas gdy np. w
architekturze x86 jest zaledwie 8 rejestrów), co również ma wpływ na zmniejszenie liczby odwołań do pamięci. Dzięki przetwarzaniu potokowemu (ang. pipelining) wszystkie rozkazy wykonują się w jednym cyklu maszynowym, co pozwala na znaczne uproszczenie bloku wykonawczego, a zastosowanie superskalarności także na umożliwienie równoległego wykonywania rozkazów. Dodatkowo czas reakcji na przerwania jest krótszy.

25 Instrukcje procesorów
Producenci nowoczesnych procesorów za podstawowy kierunek rozwoju technologicznego obrali rozszerzenie multimedialnych możliwości układu. Poszerzone listy rozkazów operujące na stało- i zmiennoprzecinkowych macierzach znacząco przyspieszają obróbkę grafiki, dźwięku czy generowanie obrazów 3D. MMX Pierwszym wprowadzonym rozszerzeniem multimedialnym, wbudowanym we wszystkie obecnie produkowane modele procesorów, jest zestaw 57 instrukcji arytmetyki stałoprzecinkowej typu SIMD, znany pod nazwą MMX.

26 Instrukcje Intela SSE Również Intel wprowadził w swoich procesorach Pentium III, instrukcje zmiennoprzecinkowe SIMD-FP. Instrukcje te są wykonywane przez wyspecjalizowaną jednostkę operującą na ośmiu 128-bitowych dedykowanych rejestrach - co sprzyja optymalizacji kodu programu. SSE2 Zestaw instrukcji SSE poszerzony o 144 nowe rozkazy umożliwiające operacje na 128-bitowych liczbach zmiennoprzecinkowych o pojedynczej i podwójnej precyzji oraz 128-bitowych operandach stałopozycyjnych (Pentium 4)

27 Instrukcje AMD 3DNow! Firma AMD wprowadziła 21 nowych instrukcji zmiennoprzecinkowych typu SIMD-FP zorientowanych na wspomaganie grafiki trójwymiarowej. Był to pierwszy przypadek wprowadzenia tak istotnych zmian do architektury procesora przez firmę inną niż Intel. SIMD-FP procesorów AMD wykorzystuje do działania połączone w pary 64-bitowe rejestry MMX - co niestety, utrudnia automatyczną optymalizację kodu programu, gdyż wymagany jest podział danych na dwa segmenty

28 3DNow! Professional W najnowszych procesorach Athlon XP i Duronach (z zegarem 1000MHz i wyżej) wprowadzono instrukcje w 100% zgodne z intelowskim SSE. 3DNow! Enhanced Do grupy poleceń 3DNow! dodano 24 nowe komendy wspomagające operacje przetwarzania liczb stałoprzecinkowych, przesyłania danych pomiędzy pamięcią cache a jednostką wykonawczą oraz przyspieszające cyfrowe przetwarzanie sygnałów. (procesory Athlon XP i Duron)


Pobierz ppt "Procesor Architektura."

Podobne prezentacje


Reklamy Google