Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Równanie Chezy (koryto doświadczalne) Akademia Rolnicza Im. Hugona Kołłątaja Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej Marcin.

Podobne prezentacje


Prezentacja na temat: "Równanie Chezy (koryto doświadczalne) Akademia Rolnicza Im. Hugona Kołłątaja Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej Marcin."— Zapis prezentacji:

1 Równanie Chezy (koryto doświadczalne) Akademia Rolnicza Im. Hugona Kołłątaja Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej Marcin Prokopek, II rok IŚ Mateusz Pomietło, II rok IŚ Krzysztof Rejnowicz, II rok IŚ Dr inż. Leszek Książek Kraków, czerwiec 2007r.

2 Spis treści 1.Wstęp Budowa koryta 2.Pomiary Czynności wstępne Pomiar rzędnych 3.Obliczenia Tabela pomiarów Wiadomości wstępne Zestawienie wyników 4.Literatura

3 Wstęp W odróżnieniu od przepływów w rurociągach, w których woda płynie pełnym przekrojem a ruch wody nie zależy od układu osi rurociągu lecz od spadku ciśnienia, w rowach, kanałach i rzekach zwanych korytami otwartymi, woda płynie ze swobodnym zwierciadłem wody, nad którym panuje ciśnienie atmosferyczne. Rozpatrywany poprzednio przepływ w rurociągach nazywany jest przepływem ciśnieniowym. W przypadku przepływu wody przewodem podziemnym ale nie pełnym przekrojem, tzn. gdy występuje swobodne zwierciadło wody, przewód taki pod względem hydraulicznym zaliczany jest do koryt otwartych czyli ściślej do przewodów o przepływie bezciśnieniowym. Wszystkie rozważania dotyczą ruchu ustalonego (trwałego), tzn. przepływu, którego obraz nie ulega zmianie w czasie a wielkości opisujące ruch wyrażone są w postaci funkcji zależnej wyłącznie od położenia.

4 Wstęp Określenie prędkości średniej w przekroju poprzecznym cieku stanowi ważne zagadnienie w przy rozwiązywaniu większości zagadnień przepływu cieczy. Posługiwanie się uśrednionymi parametrami przepływu w poszczególnych przekrojach poprzecznych, które obarczone są niepewnością (błędem) w wielu przypadkach jest koniecznością. Alternatywą bowiem są kosztowne pomiary lub przeprowadzanie symulacji z wykorzystaniem modeli numerycznych. Modele matematyczne obiektów fizycznych, którymi są również odcinki rzeki, kanału są zawsze uproszczeniem w stosunku do rzeczywistości. W praktyce model jest kompromisem pomiędzy kosztem uzyskania rozwiązania i pozyskania wystarczającej ilości parametrów charakteryzujących obiekt a dokładnością wyniku.

5 Wstęp h Dno vśvś Rozkład prędkości przypływu w pionie hydrometrycznym nie jest równomierny. Najniższe prędkości występują przy dnie wskutek oporów stawianych strugom wody przez materiał denny. Należy zauważyć, że w korytach naturalnych prędkość przy dnie nie jest równa zero, ponieważ w warstwie granicznej dna odbywa się ruch wody między cząstkami materiału dennego. W kierunku zwierciadła wody prędkość rośnie, osiągając wartości największe w strefie przypowierzchniowej. Maksimum prędkości występuje nie na poziomie zwierciadła wody, a nieco poniżej, ze względu na opory występujące na granicy ośrodka wodnego i powietrznego. Wykres przedstawiający rozkład prędkości w pionie nazywa się tachoidą.

6 Wstęp – budowa koryta Suwnica pomiarowa jeździ po szynach. Zaopatrzona jest w szpilkę pomiarową. Szpilka pomiarowa służy do pomiaru rzędnych dna i zwierciadła wody Koryto pomiarowe z możliwością regulacji nachylenia

7 Wstęp – budowa koryta Schemat działania sztucznego koryta rzecznego

8 Pomiary Nasze badanie prowadziliśmy dla trzech położeń koryta: Spadku I 4 =0,000, spadku I 5 =0,0083, oraz I 3 =0,0084 ale o przeciwnym nachyleniu. Dla każdego położenia koryta musieliśmy policzyć następujące wielkości: rzędna dna w przekrojach 2-2 i 8-8, rzędne zwierciadła wody w przekrojach 2-2 i 8-8, odległość miedzy przekrojami oraz przepływy które odczytywaliśmy z aparatury pomiarowej koryta. Pomiarów dokonywaliśmy dla trzech różnych przepływów: małego – około 30 – 45 [m 3 /h], średniego – około 95 – 110 [m 3 /h], oraz dużego – około 145 – 155 [m 3 /h] W sumie musieliśmy dokonać 36 pomiarów: dla każdego nachylenia koryta i każdego przepływu w każdym przekroju mierzyliśmy rzędną dna i zwierciadła wody.

9 Pomiary – czynności wstępne Wspólna dla każdego z nachyleń koryta pomiarowego była odległość między przekrojami oraz położenie przekrojów. Dlatego w pierwszej kolejności musieliśmy wyznaczyć przekroje 2-2 i

10 Pomiary – czynności wstępne Następnie musieliśmy zmierzyć odległość miedzy przekrojami, która będzie niezbędna do wyznaczenia spadku linii energii. L = 6 [m]

11 Pomiary – czynności wstępne Zdjęcia 1, 2 i 3 przedstawiają pomiar odległości na między przekrojami 2-2 i 8-8. Zdjęcie 1 - pomiar na przekroju 2-2, a zdjęcia 2, 3 - pomiar na przekroju 8-8. Odległość między przekrojami wynosiła L = 6 [m] 12 3

12 Pomiary – pomiar rzędnych Do pomiaru rzędnych zwierciadła wody i rzędnych dna w przekrojach 2-2 i 8-8 używaliśmy specjalnej suwnicy zaopatrzonej w wyskalowaną szpilkę pomiarową. Rzędne odczytywaliśmy w [cm] z dokładnością do 0,1 [cm]. Suwnica przesuwa się po szynach koryta co umożliwia wygodny pomiar wysokości rzędnych. Prawidłowy pomiar polegał na umieszczeniu szpilki pomiarowej na takiej wysokości aby praktycznie samym tylko końcem dotykała zwierciadła wody lub dna koryta. Należało tez zwracać uwagę aby mierzyć w miejscach, w których woda przyjmuje raczej taflę spokojną, ponieważ błędy pomiarowe wynikające z falowania wody mogą sięgać nawet kilku milimetrów. Suwnica pomiarowa

13 Pomiary – pomiar rzędnych

14 Zdjęcie 4 i 5 przedstawia prawidłowe ustawienie szpilki pomiarowej nad zwierciadłem wody – szpilka nie jest ani ponad zwierciadłem, ani nie jest zanurzona. Zdjęcie 6 i 7 przedstawia nieprawidłowe ustawienie szpilki pomiarowej nad zwierciadłem wody – szpilka jest lekko ponad zwierciadłem wody (zdjęcie 6), oraz szpilka jest zanurzona w wodzie (zdjęcie 7). Schemat pomiaru rzędnej zwierciadła wody w przekroju 2-2 i

15 Pomiary – pomiar rzędnych Pomiary wysokości zwierciadła wody na przekroju 2-2 i 8-8 – szkic przedstawia samą czynność bez uwzględniania obudowy koryta

16 Wyniki pomiarów dla pierwszego położenia koryta zestawiono w tabeli nr 1 I 4 = 0,000 nachylenie koryta Rzędne I4I4 Q [m 3 /s]b [m]L [m] Dno0,108 0,0000,01080,4856 Zw.0,1720,187 Dno0,108 0,0000,0286 0,485 6 Zw.0,2090,235 Dno0,108 0,0000,0431 0,485 6 Zw.0,2320,263 Obliczenia – tabela pomiarów

17 Żeby wyliczyć prędkość średnią wody w korycie otwartym ze wzoru Chezy, potrzebujemy obliczyć wysokość linii energii, a nie samą wysokość napełnienia. Napełnienie jest to różnica między rzędną zwierciadła wody, a rzędną dna. Linia energii jest sumą napełnienia i wysokości prędkości w zadanych przekrojach. V 2 /2g – wzór na wysokość prędkości, gdzie: –V prędkość wody w przekroju –g przyspieszenie ziemskie Najpierw liczymy napełnienie dla poszczególnych przekrojów. Następnie pole przekroju poprzecznego F [m 2 ] i obwód zwilżony O [m]. W naszym przypadku koryto jest prostokątne, więc pole to szerokość koryta b [m] oraz napełnienie w danym przekroju. Następnie liczymy pole średnie z obu przekrojów F śr [m 2 ] Obwód zwilżony O policzymy ze wzoru O = 2· Δh + b,gdzie: –b – szerokość koryta [m], –Δh – napełnienie średnie [m] ( jest to różnica między napełnieniem w przekroju 2-2, a 8-8). Obliczenia – wiadomości wstępne

18 Obliczenia Napełnienie [m]F [m 2 ] Δh [m]O [m]Fśr [m 2 ] ,0640,0790,0320,0390,0720,6280,038 0,1010,1270,0490,0620,1140,7130,064 0,1240,1550,0600,0750,1400,7640,078 Tabela 2

19 Obliczenia Gdy znamy już pola przekrojów (tabela 2) oraz mamy dane przepływy (tabela 1) możemy wyliczyć prędkość dla każdego przekroju v [m/s], która będzie nam potrzebna do wyznaczenia wysokości prędkości v 2 /2g. Wysokość prędkości Nachylenie linii energii I e [ -] które liczymy ze wzoru gdzie: Δh – różnica napełnień [m], L – odległość między przekrojami [m] R h – promień hydrauliczny F śr /O [m] (dane z tabeli 2) v [m/s]Wysokość prędkości [m] Linia energiiIcRh ,3380,2740,005840,00380,1780,1910,00220,0584 0,5840,4650,017390,010990,2350,2460,00180,0857 0,7160,5730,026120,016720,2580,2800,00360,0967

20 Do naszych obliczeń niezbędny będzie współczynnik szorstkości dna, który zmienia się wraz ze wzrostem przepływu. Dlatego odczytujemy go z krzywej. Ekstrapolujemy krzywą n=0,0325 dla Q=0,011 [m3/s] n=0,0275 dla Q=0,028 [m3/s] n=0,026 dla Q=0,043 [m3/s]

21 Obliczenia Mając już dane: współczynnik szorstkości dla konkretnych przepływów, oraz promień hydrauliczny jesteśmy wstanie wyliczyć wartość współczynnika C.

22 Obliczenia Mając już wyliczone wartości współczynnika C, oraz promień hydrauliczny i spadek linii energii możemy policzyć przepływy średnie z równania Chezy.

23 R h [m]Cv [m/s] 0,058418,980,21 0,085723,320,28 0,096725,680,46 Obliczenia – zestawienie wyników

24 Wyniki pomiarów dla drugiego położenia koryta zestawiono w tabeli nr 2 I 3 = 0,0084 nachylenie przeciwne koryta Rzędne I3I3 Q [m 3 /s]b [m]L [m] Dno0,1080,093 0,00840,0100,4856 Zw.0,1950,249 Dno0,1080,093 0,00840,029 0,485 6 Zw.0,2370,302 Dno0,1080,093 0,00840,042 0,485 6 Zw.0,2610,331 Obliczenia – tabela pomiarów

25 Obliczenia Z racji tego że koryto jest nachylone pod przeciwnym spadkiem I 3 = 0,0084, do obliczenia rzędnych linii energii w przekroju 2-2 do wysokości prędkości i napełnienia musimy dodać wartości nachylenia koryta.

26 Obliczenia Napełnienie [m]F [m 2 ] Δh [m]O [m]Fśr [m 2 ] ,8700,1560,0420,0760,1220,7280,059 0,1290,2090,0630,1010,1690,8230,082 0,1530,2380,0740,1150,1960,8760,095 Tabela 2

27 Obliczenia v [m/s] Wysokość prędkości [m] Linia energii IcIc Rh ,2370,1320,00390,00090,2480,2500,000270,081 0,4570,2820,01170,00410,3040,3060,000390,100 0,5650,3630,01630,00670,3280,3380, ,108 Dalej w obliczeniach postępujemy tak samo jak przy obliczeniach dla spadku I 4 = 0,000.

28 Obliczenia Mając już dane: współczynnik szorstkości dla konkretnych przepływów, oraz promień hydrauliczny jesteśmy wstanie wyliczyć wartość współczynnika C. Wartości współczynników n przyjmujemy takie jak dla obliczeń wyżej.

29 Obliczenia Mając już wyliczone wartości współczynnika C, oraz promień hydrauliczny i spadek linii energii możemy policzyć przepływy średnie z równania Chezy.

30 R h [m]Cv [m/s] 0,08120,550,096 0,10025,220,158 0,10826,550,357 Obliczenia – zestawienie wyników

31 Wyniki pomiarów dla drugiego położenia koryta zestawiono w tabeli nr 3 I 5 = 0,0083 nachylenie koryta Rzędne I5I5 Q [m 3 /s]b [m]L [m] Dno0,1080,093 0,00830,01190,4856 Zw.0,1480,156 Dno0,1080,093 0,00830,030 0,485 6 Zw.0,1850,191 Dno0,1040,093 0,00830,0416 0,485 6 Zw.0,2000,210 Obliczenia – tabela pomiarów

32 Obliczenia Napełnienie [m]F [m 2 ] Δh [m]O [m]Fśr [m 2 ] ,040,0630,0190,0300,0900,6650,044 0,0770,0980,0370,0480,1420,0120,0693 0,0960,1170,0460,0570,1660,8160,080 Tabela 2

33 Obliczenia Z racji tego że koryto jest nachylone pod przeciwnym spadkiem I 3 = 0,0084, do obliczenia rzędnych linii energii w przekroju 8-8 do wysokości prędkości i napełnienia musimy dodać wartości nachylenia koryta. Napełnienie w wysokość prędkości + nachylenie koryta = wysokość linii energii w przekroju 8-8

34 Obliczenia v [m/s] Wysokość prędkości [m] Linia energii IcIc Rh ,6150,3900,01930,00770,1670,2140,00770,0656 0,8000,6310,03280,02030,2250,2610,00580,0656 0,8940,7340,04080,02740,2400,2870,00770,0983 Tok obliczeniowy dla spadku I5 jest identyczny jak obliczenia dla i3 i I4 z tą różnicą, że jest to spadek normalny, czyli żeby obliczyć wysokość linii energii w przekroju 8-8 należy do napełnienia i wysokości prędkości dodać nachylenie koryta.

35 Obliczenia Mając już dane: współczynnik szorstkości dla konkretnych przepływów, oraz promień hydrauliczny jesteśmy wstanie wyliczyć wartość współczynnika C. Wartości współczynników n przyjmujemy takie jak dla obliczeń wyżej.

36 Obliczenia Mając już wyliczone wartości współczynnika C, oraz promień hydrauliczny i spadek linii energii możemy policzyć przepływy średnie z równania Chezy.

37 R h [m]Cv [m/s] 0,06519,540,44 0,089923,900,55 0,09826,130,72 Obliczenia – zestawienie wyników

38 Literatura 1.A. Jarosz, 1998, Hydraulika wydanie II 2.Sobota J., Hydraulika,


Pobierz ppt "Równanie Chezy (koryto doświadczalne) Akademia Rolnicza Im. Hugona Kołłątaja Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej Marcin."

Podobne prezentacje


Reklamy Google