Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

JOWISZ średnica [km] masa (masa Ziemi=1)318

Podobne prezentacje


Prezentacja na temat: "JOWISZ średnica [km] masa (masa Ziemi=1)318"— Zapis prezentacji:

1 JOWISZ średnica [km]142 796 masa (masa Ziemi=1)318
średnia gęstość (woda=1)1,33 czas obrotu9 h 55 min 30s okres orbitalny (Ziemia=1 rok)11,86 średnia odległość od Słońca (mln km)778 temperatura powierzchni-120ºC atmosfera bardzo gęsta księżyce16

2 KSIĘŻYCE JOWISZA KSIĘŻYCE JOWISZA
Opis: Powyżej pokazano najbliższego Jowiszowi satelitę galileuszowego, Io, na tle gigantycznej gazowej planety. Ciemna plama na lewo od Io to jego własny cień. Z wnętrza plamy cienia na Jowiszu widoczne byłoby zaćmienie Słońca. Patrząc z Ziemi często można dostrzec podobne cienie przesuwające się po dysku gigantycznej planety rzucane przez wielkie księżyce jowiszowe. Jednak w najbliższych miesiącach będzie można również zaobserwować księżyce galileuszowe przechodzące jeden przed drugim dzięki temu, iż przez pewien czas ich orbity będą widoczne niemal dokładnie z brzegu dla obserwatora związanego z Ziemią. To zdjęcie w rzeczywistych barwach i zwiększonym kontraście wykonała dwa lata temu automatyczna sonda Cassini, mijając Jowisza w drodze na spotkanie z Saturnem w 2004 roku.

3 KSIĘŻYCE GALILEUSZOWE

4 4 OLBRZYMY Opis: Jowisz i jego cztery największe satelity. Od prawej Io, Europa, Ganimedes, Callisto; Io -najbliższy Jowiszowi, Callisto - najdalej położony. Europa ma wielkość ziemskiego Księżyca, Ganimedes (największy w całym Układzie Słonecznym) jest większy od planet Merkury i Pluton. Na powierzchni Jowisza widoczna tzw. wielka czerwona plama. Obraz Callisto pochodzi z Voyagera z 1979, obraz trzech pozostałych z misji Galileo, badającej Jowisz w 1995. Autor: NASA.

5 IO Odległość od środka Jowisza:422 000 km
Okres obiegu wokół Jowisza:1 dzień 18h 29 min Masa satelity:8,94 x 1022kg Średnica równikowa satelity:3630 km Gęstość:3,57 g/cm3 Średnia temperatura powierzchni:130oK Składniki atmosfery:dwutlenek siarki Mimośród orbity:0,004 Jasność obserwowana:5,0m Rok odkrycia:1610 rok Odkrywca:Galileusz i Marius Io, satelita Jowisza, drugi wg oddalenia od planety. Oznaczony numerem I. Odkryty w 1610 przez Galileusza i (niezależnie) przez G. Mariusa, jako jeden z czterech pierwszych (poza Księżycem) satelitów w Układzie Słonecznym. Io jest piątym ze znanych księżyców Jowisza i szóstym pod względem wielkości: odległość od Jowisza: 422,000 km średnica: 3630 km masa: 8.94e22 kg Io jest najbliższy Jowiszowi z księżyców Galileusza. Po angielsku wymawia się "EYE oh" (lub "EE oh") Io była dziewicą kochaną przez Zeusa (Jowisza) i zamienioną w jałówkę przez zazdrosną Herę. Odkryta została przez Galileusza i Mariusa w Io jest troszkę większy od Księżyca. Io i Europa są pod pewnym względem podobne w budowie do planet ziemskich, głównie złożone że stopionych krzemianów. Z drugiej strony gęstość Io (3.57 g/cm3, prawie tyle co Księżyc i troszkę mniej niż Ziemia) wskazuje na brak gęstego, żelaznego jądra. Powierzchnia Io różni się bardzo od czegokolwiek innego w Układzie Słonecznym. Była to wielką niespodzianka dla naukowców obsługujących Voyager'a przy pierwszym zblizeniu. Oczekiwali oni, że zobaczą kratery uderzeniowe podobne do tych na innych ziemskich ciałach i że z ich rozmieszczenia uda się ustalić wiek powierzchni Io. Ale na Io ich nie ma, lub jest tylko kilka, kraterów uderzeniowych. Powierzchnia jest bardzo młoda i aktywna. Zamiast kraterów uderzeniowych Voyager 1 znalazł setki kraterów wulkanicznych (zdjęcie 3). Niektóre z wulkanów są aktywne! Zadziwiające zdjęcia erupcji z lawą tryskającą na 300 km zostały przesłane na Ziemię przez oba staki Voyager (zdjęcie 5). To może być najważniejsze z cząstkowych odkryć misji Voyager; był to pierwszy prawdziwy dowód na to, że wnętrza innych planet "ziemskich" są w rzeczywistości gorące i nadal aktywne. Materiał wyrzucany podczas erupcji na Io to prawdopodobnie związki siarki i dwutlenek siarki. Erupcje zmieniają się bardzo gwałtownie. W ciągu czterech miesięcy pomiędzy przelotem Voyager'a 1 i Voyager'a 2 niektóre z nich skończyły się, inne się zaczeły. Materiał nagromadzony wokół wulkanów również wyraźnie się zmienił. Ostatnie zdjęcia wykonane przez Infrared Telescope Facility, należący do NASA, położony na Mauna Kea, Hawaje pokazały nowe, potężne erupcje (zdjęcie 25). Nowa wielką forma została również zauważona koło Ra Patera przez HST (Hubble Space Telescope - Teleskop Kosmiczny Hubble'a). Tę obserwację potwierdzają, że powierzchnia Io jest naprawdę bardzo aktywna. Io posiada zadziwiające formacje terenu: wulkany głębokie na kilka kilometrów, jeziora stopionej siarki (zdjęcie 11), góry, które NIE są wulkanami (zdjęcie 13), wypływy jakiejś substancji o niskej lepkości (jakieś związki siarki?) długie na setki kilometrów, no i oczywiście wulkany. Siarka i jej związki mają różne barwy, które są odpowiedzialne za zróżnicowany wygląd Io. Analiza zdjęć Voyager'a doprowadziła naukowców do wniosku, że lawa na Io jest złożona głównie z różnych związków stopionej siarki. Z drugiej strony, późniejsze badania wykorzystujące promieniowanie podczerwone wykazały, że jest ona za gorąca jak na ciekłą siarkę. Jedna z obecnych teorii mówi, że lawa Io jest stopioną skałą krzemianową. Obecne obserwacje HST (zdjęcie 24) wykazują, że materiał ten może być bogaty w sód. Najgorętsze miejsca na Io mogą mieć temperaturę do 500 K (stwierdzono nawet 900 K), chociaż średnia temperatura jest niższą i wynosi około 130 K. Te gorące miejsca są głównym mechanizmem, dzięki któremu Io traci swoje ciepło. Energia tych wszystkich procesów pochodzi prawdopodobnie z naprężeń pływowych pomiędzy Io, Europą, Ganymede i Jowiszem. Te trzy księżyce są "złapane" w rezonans - to znaczy, że Io obiega Jowisza dwukrotnie dokładnie w czasie gdy Europa obiega go raz, Europa znowu ma okres obiegu dokładnie dwa razy krótszy niż Ganymede. Chociaż Io, jak Księżyc do Ziemi, zawsze jest skierowany tą samą stroną w kierunku Jowisza, wpływ Europy i Ganymede powoduje, że trochę się "kiwa" w obie strony. To kiwanie rozciąga i spłaszcza Io o prawie 100 metrów (to znaczy występuje tam przypływ o 100 metrów!) i generuje ciepło tak samo jak drut wyginany i prostowany kilka razy. (z powodu braku jakiegoś ciała do zakłócania jego biegu, Księżyc nie jest ogrzewany w ten sposób przez Ziemię.) Io przecina również linię pola magnetycznego Jowisza, wytwarzając prąd elektryczny. Chociaż jest to prawie nic w porównaniu z ciepłem pływowym ten prąd może mieć moc większą niż 1 trylion watów. Powoduje on odrywanie się kawałów materiału z Io, które tworzą pierścień (w kształcie torusa) wysokiego promieniowania wokół Jowisza (zdjęcie 23). Cząstki uciekające z tego pierścienia są odpowiedzialne za niezwykle wielką magnetosferę Jowisza. Io posiada cienką atmosferę złożoną z dwutlenku siarki i być może innych gazów. W przeciwieństwie do innych księżyców Galileusza, na Io występuje mało lub wcale nie ma wody. Jest to spowodowane prawdopodobnie tym, że Jowisz był we wczesnych fazach ewolucji Układu Słonecznego na tyle gorący aby odparować lotne substancje z sąsiedztwa Io, ale nie na tyle gorący aby zrobić to samo w jego głębszych partiach. Io (50 KB)

6 POWIERZCHNIA IO

7 POWIERZCHNIA POŁUDNIA IO
Opis: Kratery i klify na biegunie południowym Io. Białawe obszary to prawdopodobnie zmrożony dwutlenek siarki zgromadzony przy klifach, trzy ciemne plamy są kraterami wulkanów pokrytymi świeżą lawą. Widoczny również sinusoidalny kanał, łączący lewy dolny krater z żółtawą wypływającą lawą. Io jest aktywnym wulkanicznie księżycem. Jego aktywność jest generowana wpływem Jowisza i innych jego księżyców. Autor: NASA.

8 WULKAN PELE WULKAN NA IO ODKRYTY PRZEZ SONDE VOYAGEER

9 These frames detail the changes around Pele on Io, as seen by Voyager 1 (left), Voyager 2 (middle), and Galileo (right). The Voyager frames were taken in 1979 when the two spacecraft flew past Jupiter and it's moon Io. The Galileo view was obtained in June, Note the changes in the shape of the deposits further from the vent while the radial dark features closer to the vent show little change. The Voyager images use orange, blue, and violet filters. The Galileo image uses the green and violet filters of the Solid State Imaging system aboard the Galileo spacecraft and a synthetic blue. All three images are in a simple cylindrical projection and are approximately 1700 km x 1500 km. North is to the top.

10 THE LOKI VULCANO

11 his is a close up view of Io's northern hemisphere
his is a close up view of Io's northern hemisphere. The central feature has been named Loki Patera. The large dark area might be a lake of liquid sulphur with a raft of solid sulphur inside.

12 Voyager 2 took this picture of Io on the evening of July 9, 1979, from a range of 1.2 million kilometres (745,700 miles). On the limb of Io are two blue volcanic eruption plumes about 100 kilometres (62 miles) high. These two plumes were first seen by Voyager 1 in March 1979 and are designated Plume 5 (upper) and Plume 6 (lower). They apparently had been erupting for a period of at least four months and probably longer. A total of six plumes were seen by Voyager 2, all of which were first seen by Voyager 1. Plume 1, the largest volcano viewed by Voyager 1, was no longer erupting when Voyager 2 arrived. Plume 4 was not viewed on the edge of Io's disc by Voyager 2 and, therefore, it is not known whether it was still erupting.

13

14

15 Fiery Io is the most volcanically active body in the solar system – about a dozen volcanoes on Io are active at any one time. In this false-color map, deposits of sulfur dioxide frost appear in white and gray, while yellows and browns are probably due to other sulfurous materials. Bright red and black spots mark areas of recent volcanic activity and are usually associated with high temperatures and surface changes

16 Here is a close-up of Tvashtar Catena, an area of great volcanic activity on Io. The orange and yellow ribbon to the left is a cooling lava flow that is more than more than 37 miles (60 kilometers) long. The image is a falsely colored mosaic, as it is composed of pictures taken with near-infrared, clear and violet filters aboard the Galileo spacecraft.

17 This image of Jupiter's moon Io and its surrounding sky is shown in false colour. North is at the top, and east is to the right. Most of Io's visible surface is in shadow, though one can see part of a white crescent on its western side. This crescent is being illuminated mostly by `Jupitershine' (i.e. sunlight reflected off Jupiter). The striking burst of white light near Io's eastern equatorial edge is sunlight being scattered by the plume of the volcano Prometheus. Prometheus lies just beyond the visible edge of the moon on Io's far side. Its plume extends about 100 kilometres above the surface, and is being hit by sunlight just a little east of Io's eastern edge. Scattered light from Prometheus' plume and Io's lit crescent also contribute to the diffuse yellowish emission which appears throughout much of the sky. However, much of this emission comes from Io's Sodium Cloud: sodium atoms within Io's extensive material halo are scattering sunlight at the yellow wavelength of about 589 nanometres.

18

19

20

21 Seeing Red This view of Callisto was taken by the Galileo spacecraft’s Near-Infrared Mapping Spectrometer. In this false-color image, red equals more ice and blue equals less ice. The large central crater is about 120 miles (200 kilometers) across and reveals a complex mix of ice and non-ice materials.

22 Galileo captured this image of Tvashtar, a volcano on the Jovian moon Io on Nov. 25. The lava is so hot, it overexposed a portion of the image, seen as the white splotches. Credit:

23 Small white diffuse halos surrounding
the darkest lava flows are probably sulfurdioxide-rich snows and frosts that have been vaporized by the hot lava.

24 Galileo scientists are now studying
whether heating of the volatile, sulfur dioxide-rich plains by encroaching hot lava might account for the persistent plume activity observed near Prometheus.

25 Galileo captured this view of a 60-mile volcanic plume
(100-kilometer) high volcanic plume in the Masubi region of Io on July 3, 1999

26 rising from Io's volcanoes
These four Galileo images from 1997 show plumes of gas and dust rising from Io's volcanoes Zamana and Prometheus

27  Io has an amazing variety of terrains: calderas up to several kilometers deep, lakes of molten sulfur (below right), mountains which are apparently NOT volcanoes (left), extensive flows hundreds of kilometers long of some low viscosity fluid (some form of sulfur?), and volcanic vents. Sulfur and its compounds take on a wide range of colors which are responsible for Io's variegated appearance

28

29 Io's Nighttime Heat as seen by Galileo's Photopolarimeter-Radiometer

30 CALLISTO Odległość od środka Jowisza:1 883 000 km
Okres obiegu wokół Jowisza:16 dzień 16h 33 min Masa satelity:1,08 x 1023kg Średnica równikowa satelity:4800 km Mimośród orbity:0,007 Jasność obserwowana:5,6m Rok odkrycia:1610 rok Odkrywca:Galileusz i Marius Callisto, piąty satelita Jowisza, według oddalenia od planety (odległość 1881 tys. km). Odkryty w 1610 przez Galileusza oraz równocześnie i niezależnie od niego przez G. Mariusa. Oznaczony numerem IV jako jeden z czterech pierwszych odkrytych (poza Księżycem) satelitów w Układzie Słonecznym. Kalisto jest ósmym ze znanych księżyców Jowisza i drugim pod względem wielkości: odległość od Jowisza: 1,883,000 km średnica: 4800 km masa: 1.08e23 kg Kalisto jest najodleglejszym z księżyców Galileusza. Po angielsku wymawia się "ka LIS toh". Kalisto była nimfą, kochaną przez Zeusa i nienawidzoną przez Herę. Hera zmieniła ją w niedźwiedzicę, a Zeus umieścił ją późnej na niebie jako gwiazdozbiór Wielką Niedźwiedzicą. Odkryta została przez Galileusza i Marius'a w Kalisto jest trochę mniejsza od Merkurego, ale jej masa jest trzy razy mniejszą. Kalisto i Ganymede wydają się być złożone że skalnego jądra, otoczonego ogromnym płaszczem z wody i lodu, z lodem na powierzchni. Titan i Triton są podobne. Cała powierzchnia Kalisto pokryta jest kraterami. Większe z nich są otoczone przez serię koncentrycznych okręgów, które wyglądają jak wielkie pęknięcia wygładzone przez powolne ruchy pokrywy lodowej. Największy z nich został nazwany Valhalla. Powierzchnia Kalisto jest bardzo stara, jak góry na Księżycu i Marsie. Valhalla jest najbardziej dramatycznym przykładem krateru wielopierścieniowego. Sądzi się, że są one skutkami potężnych zderzeń. Innymi przykładami są Morze Orientu na Księżycu i Równina Słońca na Merkurym. Jak na Ganymede, na Kalisto starożytne kratery zostały zniszczone. Brakuje tam wysokich pierścieni, gwiaździstych promieni i centralnych depresji charakterystycznych dla kraterów na Księżycu i Merkurym. Inna ciekawa forma to Gipul Catena, seria kraterów uderzeniowych ułożonych w prostą linię (zdjęcie 9). Jest to prawdopodobnie rezultat uderzenia obiektu rozerwanego wcześnie przez siły pływowe podczas zbliżenia do Jowisza (tak jak kometa SL 9). W odróżnieniu od Ganymede, z jej skomplikowanymi terenami, nie ma dowodów na aktywność tektoniczną na Kalisto . Kalisto jest dobrym odnośnikiem przy porównywaniu z bardziej zawiłymi światami.

31 Callisto Asgard Region as Viewed by NIMS This view of Callisto's Asgard multi-ring structure was taken by the Near Infrared Mapping Spectrometer (NIMS) 90 minutes before closest approach. The false color image shows surface compositional differences, white=more ice, blue=less ice. The large bright/white area is the palimpsest or center of Asgard. The smaller bright area is Tornasuk, a crater with a diameter of about 70 km.

32 CALLISTO Opis: Callisto - księżyc Jowisza, zbudowany w połowie ze skał, a w połowie z lodu (zdjęcie o wzmocnionych kontrastach, zrobione ze statku kosmicznego Galileo). Powierzchnia tego księżyca nie zawiera śladów wulkanicznej działalności, jest gęsto pokryta rysami i kraterami. Blisko środka zdjęcia widoczny krater Valhalla, jeden z większych kraterów uderzeniowych w Układzie Słonecznym, o średnicy ok. 4 tys. km. Autor: NASA.

33 PRZEKRÓJ CALLISTO Opis: Callisto - hipotetyczny przekrój poprzeczny. Pomiary pola magnetycznego dokonane przez Galileo wskazują na możliwość istnienia pod powierzchnią tego księżyca Jowisza słonego oceanu. Kolejne warstwy to: gruba na 200 km warstwa lodu, słony ocean o głębokości 10 km (jasnoniebieski prążek), poniżej warstwa skał i lodu. Autor: NASA.

34

35 A Chain of Impact Craters on Callisto A portion of a chain of impact craters on Callisto is seen in this image taken by the Galileo spacecraft on November 4, This crater chain on Callisto is believed to result from the impact of a split object, similar to the fragments of Comet Shoemaker-Levy 9 which smashed into Jupiter's atmosphere in July of This high-resolution view is of Callisto's northern hemisphere at 35 degrees north, 46 degrees west, and covers an area of about eight miles (13 kilometers) across. The smallest visible crater is about 140 yards (130 meters) across. The image was taken at a range of 974 miles (1,567 kilometers).

36 Asgard Impact Structure on Callisto This four-frame mosaic shows the ancient impact structure Asgard on Callisto. This image is centered at 30 degrees north, 142 degrees west. The Asgard structure is approximately 1700 km across (1,056 mi) and consists of a bright central zone surrounded by discontinuous rings. The rings are tectonic features with scarps near the central zone and troughs at the outer margin. Several large impacts have smashed into Callisto after the formation of Asgard. The very young, bright-rayed crater Burr is located on the northern part of Asgard. This mosaic has been projected to show a uniform scale between the four mosiacked images. The image was processed by Deutsche Forschungsanstalt fuer Luft-und Raumfahrt e.V., Berlin, Germany.

37 In the highest resolution image ever taken of Jupiter's moons, the evolution of Callisto is revealed. The bright, icy spires are about 300 feet tall and contain darker dust. The dark material slides off the knobs and collects in lower areas. Impact craters, as seen in the lower inset, imply Callisto is geologically dead. Click to enlarge.

38 Callisto's Valhalla Impact Structure A portion of the central zone of the large impact structure Valhalla on Callisto was imaged by the Galileo spacecraft on November 4, The area shown here is centered at 16 degrees north, 55 degrees west and is about seven miles (11 kilometers) across. This is the highest resolution picture ever taken of Callisto and shows features as small as 200 feet (60 meters) across. The formation of Valhalla occurred early in Callisto's history; however, the central zone shown here is probably younger than Valhalla's surrounding structure. This newly acquired picture shows some small craters, although they have been softened or modified by downslope movement of debris, revealing bright ice-rich surfaces. In contrast to other areas on Callisto, most of the very smallest craters appear to have been completely obliterated. (Courtesy Arizona State University)

39 Gipul Catena This image shows a chain of craters on Callisto that is 620 kilometers long. The largest crater is 40 kilometers across. This is the longest of 12 or so such chains on Callisto. The chain probably formed from the collision of a comet that was tidally disrupted during close passage of Jupiter, such as the comet Shoemaker-Levy 9. (Copyright Calvin J. Hamilton)

40 Callisto's Valhalla Region This close up of Callisto shows the heavily cratered surface and the prominent ring structure known as Valhalla. It was acquired by Voyager 1 on March 6, Valhalla's bright central area is about 300 kilometers across with sets of concentric ridges extending out to 1,500 kilometers from the center. (Copyright Calvin J. Hamilton)

41 These cutaway views show the possible internal structures of the Galilean
satellites. Io is at the top left, Europa is at the top right, Ganymede is at the bottom left, and Callisto at the bottom right. The satellites are shown at their relative correct sizes. Io has a radius of 1,821 kilometers which is slightly smaller than the moon at a radius of 1738 kilometers. Europa's radius is 1,565 kilometers, Ganymede's radius is 2634 kilometers, and Callisto's radius is 2403 kilometers. The surfaces of the satellites were derived from image data taken by NASA's Voyager and Galileo spacecrafts. The interior characteristics are inferred from gravity field and magnetic field measurements taken by the Galileo spacecraft. With the exception of Callisto, all the satellites have metallic (iron, nickel) cores (shown in gray) drawn to the correct relative size. Again, with the exception of Callisto, all the cores are surrounded by rock shells. Io's rock or silicate shell extends to the surface, while the rock layers of Ganymede and Europa (drawn to correct relative scale) are in turn surrounded by shells of water in ice or liquid form (shown in blue and white and drawn to the correct relative scale). Callisto is shown as a relatively uniform mixture of comparable amounts of ice and rock that extends up to a possible salty ocean (shown in blue) beneath a thick icy crust (shown in white). The surface layers of Ganymede and Callisto are shown as white to indicate that they may differ from the underlying ice/rock layers in a variety of ways including, for example, the percentage of rock they contain. The white surface layer on Europa could have similar significance, although it could also suggest an ice layer overlying a liquid water ocean. Galileo images of Europa suggest that a liquid water ocean might now underlie a surface ice layer several to ten kilometers thick; however, this evidence is also consistent with the existence of a liquid water ocean in the past. It is not certain if there is a liquid water ocean on Europa at present.

42 Jupiter's moon Callisto is thought to be the most battered body in the solar system. With no major geologic or eolian (wind) activity to wipe craters away, Callisto's surface gives new meaning to the word pockmarked. Spectral studies show that Callisto's crust is composed of dirty water ice. This shot is a mosaic of images taken by the Voyager 1 (left), Voyager 2 (right) and Galileo (center) probes.

43 SONDA VOYAGER Dane podstawowe: Cel: Voyager 1 przelot koło Jowisza, Saturna. Voyager 2 przelot koło Jowisza, Saturna, Urana i Neptuna. Właściciel sondy: NASA. Start: Voyager 1: 05 wrzesień 1977r. o 12:56 UTC Voyager 2: 20 sierpień 1977r. o 14:29 UTC. Rakieta nośna: Titan III E-Centaur Okno startowe: brak danych. Odległość Ziemia - Jowisz: w 1977r ok. 1,5 mld km. Koszt misji: jak dotąd 895 mln US Dane techniczne: Masa całkowita sondy: 815 kg. Masa aparatury naukowej: 115 kg. Moc generatorów RTG: 470 kW. Wymiary sondy: ? x ? x ? m, średnica anteny głównej 4 m, Magnetometr znajduje się na końcu masztu długości 13 m.

44 TRASA VOYAGERA VOYAGER 2 W odległości ,78 km sonda Voyager 2 przeleciała w nad powierzchnią Jowisza, była godzina 22:29:51 UTC. VOYAGER 1 Tego dnia o 12:05:26 czasu UTC Voyager 1 przeleciał w pobliżu Jowisza w odległości km od powierzchni planety. VOYAGER 1 Voyager 1 przeleciał w pobliżu Saturna o 23:46:30 czasu UTC w odległości ,7 km od powierzchni planety. Start sondy VOYAGER 2. Sonda została wyniesiona na orbitę przy użyciu rakiety Titan III E-Centaur z Centrum im. Kenediego na Florydzie, start nastąpił o 14:29 UTC. Po 10 dniach krążenia na orbicie okołoziemskiej odpalone zostały dodatkowe silniki odrzutowe, które skierowały sondę w stronę Jowisza. Naukowcy skorzystali wtedy z wyjątkowej sytuacji. Planety ustawiły się w takim nader rzadkim położeniu, że sonda mogła je po kolei odwiedzić. Dla Voyager'a 2 zaplanowano przeloty koło Jowisza, Saturna, Urana i Neptuna, po czym sonda uda się poza nasz Układ Słoneczny. Start sondy VOYAGER 1. O godzinie 12:56 UTC z KSC na Florydzie wystartowała druga sonda z serii VOYAGER, rakieta nośna Titan III E-Centaur wyniosła sondę Voyager 1 na orbitę okołoziemską. Podobnie jak Voyager 2, Voyager 1 po 10 dniach przebywania na orbicie skierowana została w kierunku Jowisza.  Dla Voyager'a 1 zaplanowano przeloty koło Jowisza i Saturna po czym sonda uda się poza nasz Układ Słoneczny.

45 BUDOWA VOYAGERA Program Naukowy - Zbadanie zewnętrznej atmosfery Jowisza i Saturna, a w szczególności zawartości w nich wodoru i tlenu. - Zbadanie siły pola grawitacyjnego Saturna oraz jego największego satelity Tytana. - Stwierdzenie, co właściwie decyduje o gwałtownych zmianach pogodowych w górnych warstwach atmosfery Jowisza I Saturna. - Zbadanie jak wygląda iż czego się składa powierzchnia największych, to jest tzw. galileuszowych księżyców Jowisza. - Zbadanie jaki mechanizm powoduje wydzielanie znacznych zasobów energii (w postaci promieniowania) przez Jowisza i Saturna oraz jak oddziaływuje to promieniowanie na powierzchnię satelitów. - Ostateczne z czego się składa największego z księżyców Saturna Tytana. Sondy VOYAGER posiadają także aparaturę do badania tzw. plazmy międzyplanetarnej, promieni kosmicznych i pól magnetycznych. Przesłanie dla innych cywilizacji Sondy niosą zapisane na miedzianej płytce widowisko obrazkowo-muzyczne, tekst z pozdrowieniami od sekretarza ONZ Kurta Waldheima i prezydenta USA Jimmy Cartera, dźwiękowy zapis ludzkiego serca, kroki słonia, szum wiatru itd... Istnieje tylko problem, czy adresaci będą umieli zbudować gramofon i zainstalować załączone igły.

46 SONDA GALILEO Dane podstawowe: Cel: Orbita Jowisza. Właściciel sondy: NASA. Start: 18 październik 1989 roku o 16:53:40 UTC. Rakieta nośna: Prom kosmiczny Atlantis STS-34 Okno startowe: brak danych. Droga do pokonania: brak danych. Wejście na orbitę: 07 grudzień 1995 roku. Koszt misji: brak danych. Planowany koniec misji: 21 wrzesień 2003 roku. Dane techniczne: Masa sondy z paliwem: ponad 2223 kg. Masa paliwa: 925 kg. Masa aparatury naukowej: 148 kg Wymiary sondy: wysokość: 6,15 m, średnica głównej anteny: 4,8 m. Dane próbnika atmosferycznego: Cel: Wejście w atmosferę Jowisza. Masa lądownika: 339 kg Masa aparatury naukowej: 30 kg Wymiary próbnika: wysokość: 0,86 m. Data wejścia w atmosferę: 07 grudzień 1995 roku Czas opadania lądownika w atmosferze: 00h 57m Koszt lądownika: brak danych.

47


Pobierz ppt "JOWISZ średnica [km] masa (masa Ziemi=1)318"

Podobne prezentacje


Reklamy Google