Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.

Podobne prezentacje


Prezentacja na temat: "Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki."— Zapis prezentacji:

1 Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK – NAJLEPSZA INWESTYCJA Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie

2 DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ CHEMICZNYCH ID grupy: 97/39_MF_G2 Opiekun: ANNA NOWAK Kompetencja: Matematyczno - fizyczna Temat projektowy: RÓŻNE WŁASNOŚCI LICZB NATURALNYCH Semestr/rok szkolny: 5/2011/2012

3 Liczby naturalne Liczby naturalne – liczby służące do określenia liczności np. cztery osoby, i ustalania kolejności np. druga osoba. Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb.

4

5 Zero (0) *Pierwotnie zero było wykorzystywane jako pomoc w oznaczeniu "pustego miejsca". Już w VII w. p.n.e. Babilończycy stosowali zero jako cyfrę w zapisie pozycyjnym, ale nigdy nie występowało ono samodzielnie jako liczba. W cywilizacji Majów zero było znane jako liczba już w I w. p.n.e. (być może znali je już w IV wieku p.n.e. wchłonięci przez Majów Olmekowie). W kulturze zachodniej zero, jako oddzielna, pełnoprawna wartość, pojawiło się znacznie później. *W roku 130 zera używał Klaudiusz Ptolemeusz. Współczesne pojęcie zera przypisuje się Hindusowi Brahmagupcie, pierwsze wzmianki pochodzą z roku 628. Zero stosowano niekonsekwentnie również w średniowieczu, nie miało ono jednak swojej reprezentacji w cyfrach rzymskich - stosowano łacińskie słowo nullae.

6 Liczba doskonała Liczba doskonała – liczba naturalna, która jest sumą wszystkich swych dzielników właściwych Najmniejszą liczbą doskonałą jest 6, ponieważ 6 = Następną jest 28 (28 = ), a kolejne to 496, 8128, , i

7

8 Liczby zaprzyjaźnione Liczby zaprzyjaźnione - to para różnych liczb naturalnych, takich że suma dzielników każdej z tych liczb równa się drugiej (nie uwzględniając tych dwóch liczb jako dzielników). Pierwszą parą takich liczb, która została podana już przez Pitagorasa, jest para liczb 220 i 284, ponieważ: 220 = (dzielniki 284) 284 = (dzielniki 220) Nie wiadomo, czy istnieje nieskończenie wiele par liczb zaprzyjaźnionych i czy istnieje taka para liczb o różnej parzystości.

9 Oto wszystkie pary liczb zaprzyjaźnionych, z których co najmniej jedna liczba jest mniejsza od sto tysięcy: 220 i i i i i i i i i i i i i 88730

10 Liczby Mersenne'a Liczby Mersenne'a – liczby postaci 2p 1, gdzie p jest liczbą naturalną. Liczby Mersenne'a zostały tak nazwane na cześć francuskiego matematyka Marina Mersenne'a, który opublikował tablicę liczb pierwszych tego typu – jak się później okazało, błędną. Liczbę Mersenne'a M(p) można określić jako sumę p pierwszych wyrazów ciągu geometrycznego: 2, 2, 2, 2, 2,...

11 Liczba pierwsza Liczba pierwsza – liczba naturalna, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, itp.

12 Liczby pierwsze bliźniacze Liczby pierwsze p i q są bliźniacze jeśli p = q + 2. Przykłady: 3 i 5, 5 i 7, 11 i 13, 17 i 19, 29 i 31, 41 i 43, 59 i 61, 71 i jest bliźniacza zarówno z 3 jak i z 7. Nie wiadomo, czy istnieje nieskończenie wiele bliźniaczych liczb pierwszych.

13 Liczby pierwsze czworacze Liczby czworacze – liczby pierwsze,mające postać p, p+2, p+6, p+8, np. 5, 7, 11 i 13 lub 101, 103, 107 i 109, czyli dwie pary liczb bliźniaczych w najbliższym możliwym sąsiedztwie. Największe znane liczby czworacze to : × 4799! , × 4799! , × 4799! , × 4799! , gdzie ! jest silnią.

14 Liczby pierwsze izolowane Liczba pierwsza p jest izolowana, jeśli najbliższa jej liczba pierwsza różni się od p co najmniej o 4. Przykłady:23, 89, 157, 173.

15 Liczby lustrzane pierwsze To pary liczb pierwszych, z których jedna powstaje przez zapisanie cyfr dziesiętnych drugiej w odwrotnej kolejności. Przykłady: 13 i 31, 17 i 71, 37 i 73, 79 i 97, 107 i 701,...

16 Zastosowanie liczb pierwszych Liczby pierwsze są stosowane w niektórych znanych algorytmach kryptograficznych. Jednym z takich jest RSA. Rozwój tych algorytmów zapewnia rozwój projektów wyszukiwania ogromnych liczb pierwszych, takich jak GIMPS.

17 GIMPS Great Internet Mersenne Prime Search (GIMPS) -to projekt obliczeń rozproszonych w którym biorą udział ochotnicy poszukujący liczb pierwszych Mersenne'a. Założycielem i autorem oprogramowania jest George Woltman. Podstawowe programy wykorzystywane w projekcie, Prime95 i MPrime, są typu open source.

18 Liczby całkowite Liczby całkowite – intuicyjnie definiując są to: liczby naturalne dodatnie oraz liczby przeciwne do nich a także liczba zero. Liczby całkowite są szczególnym przypadkiem liczb wymiernych i tym samym liczb rzeczywistych, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

19 Liczby wymierne Liczby wymierne – liczby, które można zapisać w postaci ilorazu dwóch liczb całkowitych, gdzie druga jest różna od zera. Są to więc liczby, które można przedstawić za pomocą ułamka zwykłego e

20 Liczby rzeczywiste Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.

21 Liczby zespolone Liczby zespolone – liczby będące elementami rozszerzenia ciała liczb rzeczywistych o jednostkę urojoną i, tj. pierwiastek wielomianu x2 + 1 (innymi słowy, jednostka urojona spełnia równanie i2 = 1). Każda liczba zespolona z może być zapisana w postaci z = a + bi, gdzie a,b są pewnymi liczbami rzeczywistymi, nazywanymi odpowiednio częścią rzeczywistą oraz częścią urojoną liczby z.

22 System liczbowy System liczbowy – zbiór reguł jednolitego zapisu i nazewnictwa liczb. Do zapisywania liczb używa się skończonego zbioru znaków, zwanych cyframi, które można łączyć w dowolnie długie ciągi, otrzymując nieskończoną liczbę kombinacji.

23 System jedynkowy Najbardziej prymitywnym systemem liczbowym jest jedynkowy system liczbowy, w którym występuje tylko jeden znak (np. 1, albo (częściej) pionowa kreska). W systemie tym kolejne liczby są tworzone przez proste powtarzanie tego znaku. Np. 3 w tym systemie jest równe 111, a pięć Systemem takim posługują się np. Pigmeje [potrzebne źródło]. Kiedy, w przypadku większych liczb, zaczyna się grupować symbole, np. po 5 (cztery równoległe kreski, przekreślone piątą), mamy do czynienia z przejściem do addytywnego systemu liczbowego.

24 Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK – NAJLEPSZA INWESTYCJA Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie


Pobierz ppt "Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki."

Podobne prezentacje


Reklamy Google