Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.

Podobne prezentacje


Prezentacja na temat: "Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania."— Zapis prezentacji:

1 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 W podejściu nie-archimedesowym nazywanym też leksykograficznym również funkcja osiągania jest funkcją wektorową trzy lub więcej elementową (trzy lub więcej składnikową) Każdemu z elementów przypisuje się priorytet Pierwszy składnik przedstawia ważoną sumę wszystkich niepożądanych odchyleń dla tych zadań, które uznane zostały za twarde (tzn. dla sztywnych ograniczeń). Składnikowi temu nadaje się priorytet k = 1, Drugi składnik jest ważoną sumą wszystkich niepożądanych odchyleń dla tych zadań, którym decydent (D) nadał priorytet k = 2, Nie-archimedesowe (leksykograficzne) PZ

2 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 2 Trzeci element jest ważoną sumą wszystkich niepożądanych odchyleń dla tych zadań, którym decydent (D) nadał priorytet k = 3, i tak dalej ogólnie do poziomu priorytetu K Zwykle: * do grupy twardych ograniczeń (K = 1) zalicza się ograniczenia pierwotnego sformułowania problemu decyzyjnego * do grup pozostałych ograniczeń, o mniej znaczących priorytetach (k = 2,...., K) zalicza się zadania powstałe z transformacji pierwotnych funkcji celu

3 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 3 W leksykograficznym PZ poszukujemy leksykograficznego minimum funkcji osiągania - wektorowa funkcja osiągania - wektor ujemnych niepożądanych odchyleń na poziomie priorytetu k (k = 1,2,....., K) - wektor dodatnich niepożądanych odchyleń na poziomie priorytetu k (k = 1,2,...., K) - wektor wag dla ujemnych niepożądanych odchyleń na poziomie priorytetu k (k = 1,2,...., K) - wektor wag dla dodatnich niepożądanych odchyleń na poziomie priorytetu k (k = 1,2,...., K)

4 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 4 W leksykograficznym programowaniu zadaniowym poszukuje się rozwiązania dającego leksykograficzne minimum funkcji osiągania

5 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 5 O doborze wag: wszystkie wagi są nieujemne niezerowe wartości nadaje się tylko tym wagom, które związane są z niepożądanymi odchyleniami (tzn. tymi, które mają być minimalizowane) wagom dla niepożądanych odchyleń na poziomie priorytetu 1 zwykle nadawana jest wartość jeden (podobnie jak w ważonym PZ) wartości wag dla niepożądanych odchyleń na poziomie priorytetu k = 2,..., K są ustalane w drodze subiektywnego procesu i ich wartości mogą być zmieniane w wyniku analizy po-optymalizacyjnej

6 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 6 Obrazowy przykład Załóżmy, że decydenci naszej firmy są zgodni, iż większy udział na rynku jest ważniejszy niż osiąganie większych zysków, chociaż nie są zgodni dokładnie na ile ważniejszy. Tak więc, zamiast ważyć odpowiednie odchylenia celów, są oni jedynie w stanie uszeregować te odchylenia. Wektorowa funkcja osiągania W takim przypadku możemy uciec się do nie-archimedesowego PZ i zbudować następujący model: - element wektora funkcji osiągania na poziomie priorytetu 1 - element wektora funkcji osiągania na poziomie priorytetu 2 - element wektora funkcji osiągania na poziomie priorytetu 3

7 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 7 Wektor ujemnych niepożądanych odchyleń i związany z nim wektor wag na poziomie priorytetu 1 – nie występuje Wektor dodatnich niepożądanych odchyleń i związany z nim wektor wag na poziomie priorytetu 1 Wektor ujemnych niepożądanych odchyleń i związany z nim wektor wag na poziomie priorytetu 2 Wektor dodatnich niepożądanych odchyleń i związany z nim wektor wag na poziomie priorytetu 2 - nie występuje

8 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 8 Wektor ujemnych niepożądanych odchyleń i związany z nim wektor wag na poziomie priorytetu 3 Wektor dodatnich niepożądanych odchyleń i związany z nim wektor wag na poziomie priorytetu 3 - nie występuje

9 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 9 Model nie-archimedesowego PZ rozważanego problemu decyzyjnego ma postać: (zadanie dla udziałów w rynku w rozważanym okresie czasu) (zadanie dla całkowitego zysku w rozważanym okresie czasu) (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 1.) (ograniczenie nasycenia rynku produktu 2.) (warunki nieujemności) (warunki niejednoczesnej dodatniości) Znaleźć wartości i takie, które zapewniają

10 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 10 Graficzna ilustracja Punkty wierzchołkowe obszaru rozwiązań pożądanych Obszar pożądanych rozwiązań jest taki sam jak dla Archimedesowego PZ

11 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 11 Sekwencyjny sposób rozwiązania modelu nie- archimedesowego PZ wykorzystujący posiadane oprogramowanie jednej z metod programowania liniowego: Krok 1: Sformułowanie pierwszego zagadnienia programowania liniowego zapewniającego spełnienie ograniczeń związanych z poziomem priorytetu 1 (ograniczeń twardych) Model ten ma następującą strukturę: gdzie, Zminimalizować: spełniając: - zbiór indeksów ograniczeń twardych - priorytet 1 Niech optymalne rozwiązanie tego modelu daje wartość

12 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 12 Krok 2: Sformułowanie drugiego zagadnienia programowania liniowego zapewniającego spełnienie ograniczeń związanych z poziomem priorytetu 1 i 2 (ograniczeń twardych i miękkich z poziomu priorytetu 2) Model ten ma następującą strukturę: gdzie, Zminimalizować: spełniając: - zbiór indeksów ograniczeń twardych - priorytet 1 - zbiór indeksów ograniczeń miękkich - priorytet 2 Niech optymalne rozwiązanie tego modelu daje wartość

13 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 13 Krok K: Sformułowanie drugiego zagadnienia programowania liniowego zapewniającego spełnienie ograniczeń związanych z poziomem priorytetu 1, 2,..., K (ograniczeń twardych i miękkich z poziomu priorytetu 2,..., K) Model ten ma następującą strukturę: gdzie, Zminimalizować: spełniając: - zbiór indeksów ograniczeń twardych - priorytet 1 - zbiór indeksów ograniczeń miękkich - priorytet 2,..., K Niech optymalne rozwiązanie tego modelu daje wartość

14 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 14 Rozwiązanie związane z ostanim K – tym modelem jest rozwiązaniem nie-archimedesowego sformułowania programowania zadaniowego

15 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 15 Obrazowy przykład Zadanie 1 (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 1.) (ograniczenie nasycenia rynku produktu 2.) Znaleźć wartości i takie, które minimalizują spełniając

16 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 16 Graficzna ilustracja Otrzymane rozwiązanie Obszar rozwiązań pożądanych Zadania 1

17 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 17 Ilustracja graficzna rozwiązania Zadania 1 Najlepsze wartości odchyleń drugiego poziomu (priorytet2): Najlepsze wartości odchyleń trzeciego poziomu (priorytet3):

18 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 18 Uzyskany pierwszy wektor funkcji osiągania

19 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 19 Zadanie 2 (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 1.) (ograniczenie nasycenia rynku produktu 2.) Znaleźć wartości i takie, które minimalizują spełniając (zadanie dla udziałów w rynku w rozważanym okresie czasu) (warunki nieujemności) (warunek uzyskanego poziomu osiągania dla poziomu priorytetu 1)

20 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 20 Graficzna ilustracja Obszar rozwiązań pożądanych Zadania 2 Otrzymane rozwiązanie

21 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 21 Ilustracja graficzna rozwiązania Zadania 2 Najlepsze wartości odchyleń trzeciego poziomu (priorytet3):

22 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 22 Uzyskany drugi wektor funkcji osiągania

23 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 23 Zadanie 3 (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 1.) (ograniczenie nasycenia rynku produktu 2.) Znaleźć wartości i takie, które minimalizują spełniając (zadanie dla udziałów w rynku w rozważanym okresie czasu) (zadanie dla całkowitego zysku w rozważanym okresie czasu) (warunki nieujemności) (warunek uzyskanego poziomu osiągania dla poziomu priorytetu 1) (warunek uzyskanego poziomu osiągania dla poziomu priorytetu 2)

24 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 24 Graficzna ilustracja Obszar rozwiązań pożądanych Zadania 3 Otrzymane rozwiązanie

25 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 25 Ilustracja graficzna rozwiązania Zadania 3 Uzyskany trzeci wektor funkcji osiągania zatem rozwiązanie

26 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 26 Uzyskane rozwiązanie nie jest rozwiązaniem optymalnym w sensie porządku Pareto !!! ale jest to rozwiązanie optymalne w sensie porządku leksykograficznego dla niepożądanych odchyleń od wskazanych poziomów aspiracji przy wskazanych priorytetach

27 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 27 Nie - archimedesowe sformułowanie PZ Zalety * Każde zadanie (cel) jest oddzielnie reprezentowane w modelu (tzn. unika się agregacji) a zatem ma się do czynienia tablicą wskaźników działania, zamiast z zastępczym, pojedynczym wskaźnikiem * Można posługiwać się zarówno twardymi jak i miękkimi zadaniami * Decydent jest zmuszony estymować poziom aspiracji dla swoich celów, a to służy wymuszeniu dodatkowego wglądu w rozważany problem decyzyjny

28 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 28 * Rozwiązanie nie-archimedesowego PZ jest możliwe za pomocą tradycyjnych metod lub oprogramowania PL * Unika się określania liczbowych wag dla odchyleń poszczególnych celów (jak w archimedesowym PZ), zastępując je szeregowaniem tych odchyleń

29 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 29 Wady * Zbudowanie modelu wymaga więcej czasu i zastanowienia * Potrzebne jest większe zaangażowanie decydenta w rozwiązywanie problemu decyzyjnego m.in. w ustalanie poziomów aspiracji i wag odchyleń niepożadanych * Subiektywność odnosząca się do wag nadawanym na mniej znaczących poziomach priorytetu (od poziomu 2 do K)

30 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 30 * Szeregowanie zadań w powiązaniu z pojęciem leksykograficznego minimum, oznacza, że jakiekolwiek zadania na poziomie priorytetu k są ostatecznie preferowane w stosunku do zadań z poziomu priorytetu k+1 lub niższego (tj. niezależnie od wag liczbowych przypisywanych zadaniom na niższych poziomach (od poziomu k+1), wagi przypisywane na poziomie k są traktowane jako ważniejsze)

31 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 31 Czebyszewskie Programowanie Zadaniowe Rozumienie,,najlepszego rozwiązania w podejściach programowania zadaniowego: Archimedesowe – minimalizacja, w leksykograficznym sensie, dwuelementowego wektora ważonych sum wszystkich niepożądanych odchyleń od postawionych zadań/celów przy wskazanych priorytetach Nie archimedesowe - minimalizacja, w leksykograficznym sensie, uporządkowanego wektora wszystkich niepożądanych odchyleń od postawionych celów/zadań Czebyszewskie - minimalizacja jednakowej wartości wszystkich niepożądanych odchyleń

32 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 32 Podejście czebyszewskie stanowi podstawę tego co nazywane jest minimaksowym PZ lub programowaniem rozmytym Przedstawimy podstawową postać Czebyszewskiego PZ i jak jest ono związane programowaniem rozmytym

33 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 33 Obrazowy przykład Jak każde podejście PZ, pierwszym krokiem jest sprowadzenie zapisu problemu do postaci zawierającej jedynie zadania Różnica: zamiast stosować subiektywne podejście do ustalania poziomów aspiracji dla poszczególnych celów-zadań, najpierw znajdujemy,,najlepsze i,,najgorsze wartości dla tych celów- zadań przy określonych ograniczeniach twardych

34 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 34 Przypomnijmy pierwotne sformułowanie problemu Znaleźć wartości i taki, które: (czyli przechwycone w rozważanym okresie czasu udziały na rynku) maksymalizują (czyli całkowity zysk w rozważanym okresie czasu) maksymalizują spełniając: (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 1.) (ograniczenie nasycenia rynku produktu 2.) (warunki nieujemności) Założymy, że cztery ograniczenia/zadania będziemy traktowali jako twarde (sztywne)

35 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 35 Rozwiązujemy model decyzyjny w pierwotnym sformułowaniu jako konwencjonalne zadanie programowania liniowego, wykorzystując tylko jeden cel w danej chwili. Po rozwiązaniu takiego problemu: określimy najlepszą możliwą wartość rozważanego aktualnie celu/zadania; możemy również określić (przez podstawienie uzyskanych wartości zmiennych decyzyjnych) wartości pozostałych celów/zadań przy optymalnej wartości aktualnie rozważanego celu/zadania

36 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 36 Graficzne rozwiązanie zagadnienia: Punkty wierzchołkowe: Najlepsze rozwiązanie dla

37 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 37 Osiągane poziomy realizacji innych zadań/celów związane z najlepszym osiąganym poziomem dla aktualnie rozważanego zadania/celu Możemy policzyć: wartość, przy najlepszej wartości Wyniesie ona: wartość przy najlepszej wartości Wyniesie ona:,

38 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 38 Zestawienie wyników w tabeli: Optymalizacja ze względu na Optymalizacja ze względu na Wartość Możemy stwierdzić, że: wartość pierwszego celu nigdy nie może być większa niż 70, drugiego, większa niż 110 (najlepsze wartości celów) wartość pierwszego celu nie powinna być mniejsza niż 60, drugiego, mniejsza niż 70 (najgorsze wartości celów)

39 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 39 Uzyskane najlepsze wartości celów/zadań używamy w drugim kroku jako poziomy aspiracji przy formułowaniu Czebyszewskiego PZ w postaci: Znaleźć wartości i takie, które: minimalizują (czyli jednakowe odchylenie od jakiegokolwiek celu/zadania ) spełniając: (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 1.) (ograniczenie nasycenia rynku produktu 2.) (zadanie dla zysku) (zadanie dla udziałów na rynku) (warunki nieujemności)

40 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 40 Rozwiązanie: Uwaga: Interpretacja geometryczna rozwiązania: Znajdując rozwiązanie w którym minimalizowane jest minimalizujemy (do tej samej wartości) niepożądane odchylenie od każdego z poziomów aspiracji pojedynczych celów/zadań

41 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 41 Zalety czebyszewskiego PZ: Każde zadanie/cel jest oddzielnie reprezentowany w modelu (tj. unikamy agregacji) Od decydenta nie wymaga się estymacji poziomów aspiracji jego celów, ponieważ uzyskiwane są one z rozwiązania serii modeli PL Nie wymagana jest procedura szeregowania lub ważenia celów/zadań Potrzebna jest tylko jedna dodatkowa zmienna Rozwiązanie modelu czebyszewskiego LPZ jest możliwe z pomocą konwencjonalnych metod lub oprogramowania PL

42 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 42 Wady: Należy rozwiązać tyle modeli PL jak wiele jest funkcji celu (jest to rzadko poważny problem) Znaczenie odchyleń dla poszczególnych celów/zadań może nie być jednakowe

43 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 43 Programowanie rozmyte Czebyszewskie PZ i programowanie rozmyte są ze sobą ściśle związane - chociaż wielu zwolenników programowania rozmytego zdaje się zapominać o tym, że może być ono postrzegane jako po prostu inna forma programowania zadaniowego Dalej: krótkie przedstawienie programowania rozmytego

44 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 44 Zakładając, że wszystkie cele/zadania podlegają maksymalizacji ogólny model programowania rozmytego może być przedstawiony następująco: zminimalizować spełniając: gdzie: - sztuczna zmienna reprezentująca poziom odchylenia, - funkcja reprezentująca k-ty cel, - maksymalna wartość jaką może przyjąć k-ta funkcja celu (uzyskana przez rozwiązanie kolejnych modeli PL) - minimalna wartość jaką może przyjąć k-ta funkcja celu (uzyskana przez rozwiązanie kolejnych modeli PL)

45 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 45 Inaczej: zminimalizować spełniając:

46 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 46 Obrazowy przykład: Wykorzystując programowanie rozmyte, możemy sformułować następujący model: Znaleźć wartościi takie, które: minimalizują (czyli jednakowy stopień odchylenia od jakiegokolwiek celu/zadania ) spełniając: (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 2.) (zadanie dla zysku) (zadanie dla udziałów na rynku) (warunki nieujemności) (ograniczenie nasycenia rynku produktu 1.)

47 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 47 Czyli: Znaleźć wartościi takie, które: minimalizują (czyli jednakowy stopień odchylenia od jakiegokolwiek celu/zadania ) spełniając: (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 2.) (zadanie dla zysku) (zadanie dla udziałów na rynku) (warunki nieujemności) (ograniczenie nasycenia rynku produktu 1.)

48 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 48 Rozwiązanie modelu: Uwaga:

49 Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 49 Interpretacja geometryczna rozwiązania programowania rozmytego: Znajdując rozwiązanie w którym minimalizowane jest minimalizujemy w jednakowym stopniu niepożądane odchylenie od każdego z poziomów aspiracji pojedynczych celów/zadań


Pobierz ppt "Struktury i algorytmy wspomagania decyzji 2012/2013 Zagadnienia wielocelowe IV Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania."

Podobne prezentacje


Reklamy Google