Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

1 adiko ln - ehko ln - -fijn + Wzór w Odwrotnej Notacji Polskiej : Wzór w notacji nawiasowej : a*(d*i*(k*o-l*n)-e*h*(k*o-l*n))+f*i*j*n Odwrotna Notacja.

Podobne prezentacje


Prezentacja na temat: "1 adiko ln - ehko ln - -fijn + Wzór w Odwrotnej Notacji Polskiej : Wzór w notacji nawiasowej : a*(d*i*(k*o-l*n)-e*h*(k*o-l*n))+f*i*j*n Odwrotna Notacja."— Zapis prezentacji:

1

2 1 adiko ln - ehko ln - -fijn + Wzór w Odwrotnej Notacji Polskiej : Wzór w notacji nawiasowej : a*(d*i*(k*o-l*n)-e*h*(k*o-l*n))+f*i*j*n Odwrotna Notacja Polska (ONP) Odwrotna Notacja Polska (ONP) (Reverse Polish Notation) Jan Łukasiewicz

3 Przykład konwersji wzoru w ONP adiko ln - ehko ln - -fijn + do wzoru nawiasowego. Przykład konwersji wzoru w ONP adiko ln - ehko ln - -fijn + do wzoru nawiasowego. Operandy wzoru to wskaźniki na: 2 liczby, symbole, liczby i symbole (wielomiany)

4 adiko ln - ehko ln - -fijn + a Przepisywanie symboli 3

5 adiko ln - ehko ln - -fijn + ad Przepisywanie symboli 4

6 adiko ln - ehko ln - -fijn + adi Przepisywanie symboli 5

7 adiko ln - ehko ln - -fijn + adik Przepisywanie symboli 6

8 adiko ln - ehko ln - -fijn + adiko Przepisywanie symboli 7

9 adiko ln - ehko ln - -fijn + adik*o A:=A [+-*] B 8

10 adiko ln - ehko ln - -fijn + adik*ol Przepisywanie symboli 9

11 adiko ln - ehko ln - -fijn + adik*oln Przepisywanie symboli 10

12 adiko ln - ehko ln - -fijn + adik*ol*n A:=A * B 11

13 adiko ln - ehko ln - -fijn + adik*o-l*n A:=A - B 12

14 adiko ln - ehko ln - -fijn + adi*(k*o-l*n) A:=A * B 13

15 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n) A:=A * B 14

16 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)e Przepisywanie symboli 15

17 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)eh Przepisywanie symboli 16

18 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)ehk Przepisywanie symboli 17

19 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)ehko Przepisywanie symboli 18

20 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)ehk*o A:=A * B 19

21 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)ehk*ol Przepisywanie symboli 20

22 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)ehk*oln Przepisywanie symboli 21

23 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)ehk*ol*n A:=A * B 22

24 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)ehk*o-l*n A:=A - B 23

25 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)eh*(k*o-l*n) Przepisywanie symboli 24

26 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)e*h*(k*o-l*n) A:=A * B 25

27 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)-e*h*(k*o-l*n) A:=A - B 26

28 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)-e*h*(k*o-l*n)f Przepisywanie symboli 27

29 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)-e*h*(k*o-l*n)fi Przepisywanie symboli 28

30 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)-e*h*(k*o-l*n)fij Przepisywanie symboli 29

31 adiko ln -* ehko ln - -fijn + ad*i*(k*o-l*n)-e*h*(k*o-l*n)fijn Przepisywanie symboli 30

32 + ad*i*(k*o-l*n)-e*h*(k*o-l*n)fij*n Przepisywanie symboli 31

33 + ad*i*(k*o-l*n)-e*h*(k*o-l*n)fi*j*n A:=A * B 32

34 + ad*i*(k*o-l*n)-e*h*(k*o-l*n)f*i*j*n A:=A * B 33

35 + ad*i*(k*o-l*n)-e*h*(k*o-l*n)+f*i*j*n A:=A + B 34

36 a*(d*i*(k*o-l*n)-e*h*(k*o-l*n)+f*i*j*n) A:=A * B 35

37 adiko ln - ehko ln - -fijn + a*(d*i*(k*o-l*n)-e*h*(k*o-l*n)+f*i*j*n) KONIEC konwertowania wzoru w ONP do notacji nawiasowej 36

38 Przykład generowania wzoru wyznacznika w ONP abc 2 d ef 3 gh i 4 jkl 5 mno aaaaabbbbcccc 2 ddeefdeefddff 3 iihhiighigggh 4 klkljljljkljk 5 ononnnommonnm numer permutacji Znak inwersji permutacji Każdej permutacji odpowiada jedna ścieżka w drzewie

39 Przykład generowania wzorów w ONP i nawiasowego 38

40 Po co generować wzory ? 39 Przekazanie wzoru w pliku tekstowym do MatLab. Wykonanie badań wielo wariantowych lub analitycznych w MatLab Generacja wzoru nawiasowego Preprocesor danych o grafie obwodu zmiana danych a) Generacja lub modyfikacja wzoru ONP Preprocesor danych o grafie obwodu Program symboliczny Wykonanie badań wielo wariantowych lub analitycznych b) zmiana danych Program symboliczny Odpowiedź: Do obliczeń wielokrotnych: wykresy dynamiczne, optymalizacja, badania statystyczne itp..

41 Przykład zastosowania wzoru wyznacznika do obserwacji charakterystyk częstotliwościowych i czasowych filtra aktywnego 40

42 Przykład zastosowania wzorow wyznaczników do optymalizacji filtra aktywnego wg metody Monte-Carlo ( char/sek na PIII-500 MHz) 41


Pobierz ppt "1 adiko ln - ehko ln - -fijn + Wzór w Odwrotnej Notacji Polskiej : Wzór w notacji nawiasowej : a*(d*i*(k*o-l*n)-e*h*(k*o-l*n))+f*i*j*n Odwrotna Notacja."

Podobne prezentacje


Reklamy Google