Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

INSTRUMENTY DŁUŻNE. Cena brudna obligacji  Obligacje są notowane na giełdzie.  Cena giełdowa (rynkowa) podawana jest procentowo w stosunku do wartości.

Podobne prezentacje


Prezentacja na temat: "INSTRUMENTY DŁUŻNE. Cena brudna obligacji  Obligacje są notowane na giełdzie.  Cena giełdowa (rynkowa) podawana jest procentowo w stosunku do wartości."— Zapis prezentacji:

1 INSTRUMENTY DŁUŻNE

2 Cena brudna obligacji  Obligacje są notowane na giełdzie.  Cena giełdowa (rynkowa) podawana jest procentowo w stosunku do wartości nominalnej, nie uwzględnia narosłych odsetek  Cena czysta obligacji to cena giełdowa  Cena brudna obligacji jest sumą ceny giełdowej i naliczonych odsetek  Cena brudna pomnożona przez wartość nominalną jest ceną zakupu obligacji  Odsetki I nalicza się także procentowo w stosunku do wartości nominalnej - wg wzoru:

3 Cena czysta, cena brudna Przykład   Obligacja kuponowa o nominale 1000 zł, rocznych kuponach, oprocentowaniu w wysokości 6%, na kwartał przed kolejnym kuponem ma cenę giełdową 98,20 %. Jaka jest cena brudna tej obligacji ?   Po jakiej cenie można nabyć tę obligację ?   Narosłe odsetki: (270/360)*6% = 4,5 %   Cena brudna: 98,20 % + 4,5 %= 102,70 %   Cena zakupu 102,70 % * 1000 zł =1027 zł

4 Zakup obligacji na giełdzie, między wypłatami kuponów (n kuponów do wykupu)  cena zakupu obligacji (P) = = cena brudna * wartość nominalna obligacji Dzieląc przez M równanie definiujące stopę YTM w tym przypadku otrzymujemy gdzie lewa strona oznacza cenę brudną obligacji, zaś prawa jest sumą zaktualizowanych stopą YTM przyszłych przepływów w ujęciu procentowym (C/M oznacza oprocentowanie obligacji )

5 Stopa rentowności obligacji a jej cena brudna (inne sformułowanie) Stopa rentowności obligacji – Stopa rentowności obligacji – zanualizowana (obliczona w stosunku rocznym) stopa procentowa, taka że obliczona za jej pomocą wartość bieżąca przyszłych przepływów z obligacji w ujęciu procentowym jest równa cenie brudnej zanualizowana (obliczona w stosunku rocznym) stopa procentowa, taka że obliczona za jej pomocą wartość bieżąca przyszłych przepływów z obligacji w ujęciu procentowym jest równa cenie brudnej

6 Ryzyko inwestycji w obligacje Ryzyko reinwestycyjne – możliwość uzyskania niskiej stopy zwrotu z wypłaconych odsetek Ryzyko ceny – występuje w przypadku handlu obligacjami na rynku wtórnym (ceny podlegają fluktuacjom związanym z popytem, podażą i przewidywaniami co do bazowej stopy procentowej a także wahaniom przypadkowym)

7 Ryzyko inwestycji w obligacje Ryzyko kredytowe – związane z emitentem, ryzyko niedotrzymania warunków umowy (tj. niezapłacenia odsetek bądź niewykupienia obligacji) Ryzyko stopy procentowej – możliwość zrealizowania stopy dochodu z inwestycji różniącej się od oczekiwanej np. w wyniku zmiany obowiązujących stóp procentowych (dotyczy obligacji o zmiennym oprocentowaniu lub obligacji o stałym oprocentowaniu przy sprzedaży na rynku wtórnym)

8 Rating krajów europejskich wykonany przez S&P, czerwiec 2011 (ciemnonieb.-AAA, jasnonieb. BBB, pom.- BB, czerw. B, róż- CCC, szary – brak oceny)

9  

10

11

12 Ryzyko inwestycji w obligacje   Ryzyko płynności (jeśli planowana jest wcześniejsza odsprzedaż na rynku wtórnym)   Ryzyko inflacji (przy obligacjach długoterminowych o stałym oprocentowaniu)

13 Średni ważony czas trwania inwestycji C 1, C 2,..,C n,- wpływy w chwilach 1,2,..,n Rozważmy dwie 10-letnie obligacje o rocznych wypłatach kuponu i wartości nominalnej 100 zł. Oprocentowanie pierwszej wynosi 6%, drugiej 8%. Obliczymy średnie ważone czasy trwania tych obligacji (1)

14 Duracja (średni czas trwania) obligacji przynoszącej regularne wpływy C t po roku, dwóch,..,n latach. Założenie: do wygaśnięcia pozostało n pełnych lat YTM - stopa do wykupu. Kapitalizacja roczna duracja (duration) D zdefiniowana jest wzorem lub inaczej gdzie P jest wyceną obligacji, dokonaną przy użyciu stopy YTM (2)

15 Duracja (średni czas trwania) inwestycji przynoszącej regularne wpływy C t w chwilach 1,2,…,n.   Duracja jest liczbą okresów bazowych (niekoniecznie całkowitą ) (3)   lub krócej

16 Duracja inwestycji przynoszącej regularne wpływy C t w chwilach 1,2,…,n.

17 Duracja - uwagi Bezpośrednio z analizy wzorów wynikają następujące wnioski:   Gdy stopa procentowa użyta do dyskontowania jest równa zeru, to duracja jest równa średniemu ważonemu czasowi trwania   Jeżeli następuje tylko jeden wpływ w chwili t, to duracja rozważanego instrumentu wynosi t.   Duracja jako funkcja YTM (IRR) jest funkcją malejącą

18 Duracja obligacji przy niepełnym pierwszym okresie odsetkowym Zakładamy, że obligacja przyniesie n wypłat, pierwszy okres odsetkowy jest niepełny i wynosi a

19 Wrażliwość wyceny (wartości bieżącej przyszłych przepływów) na zmianę stopy procentowej   Suma w mianowniku wzoru definiującego durację jest wyceną przepływów przy stopie YTM. Rozważmy taką sumę ze stopą procentową r.

20 Wrażliwość wyceny (wartości bieżącej przyszłych przepływów) na zmianę stopy procentowej z użyciem duracji   Obliczmy pochodną funkcji P względem r

21 Wrażliwość wyceny przepływów finansowych   Ostatni wzór wyraża wrażliwość wyceny na zmianę stopy procentowej   Lewa strona oznacza względną zmianę wyceny (ceny) Jej bezwzględna wartość jest proporcjonalna do duracji   Iloraz D/(1+r) nazywany jest zmodyfikowaną duracją   Przy wzroście r o jeden punkt procentowy względna procentowa zmiana ceny jest w przybliżeniu równa minus zmodyfikowana duracja   Przy spadku r o jeden punkt procentowy względna zmiana ceny jest w przybliżeniu równa zmodyfikowanej duracji

22 yzyko stopy procentowej Wrażliwość wyceny obligacji Ryzyko stopy procentowej  Oznaczmy zmodyfikowaną durację przez D M :  Bezwzględna wartość względnej zmiany ceny obligacji jest proporcjonalna do zmodyfikowanej duracji. Zmodyfikowana duracja jest nazywana wartości bieżącej przepływów  Bezwzględna wartość względnej zmiany ceny obligacji jest proporcjonalna do zmodyfikowanej duracji. Zmodyfikowana duracja jest nazywana współczynnikiem zmienności wartości bieżącej przepływów

23 Duracja nieskończonego ciągu przepływów ( r > 0)

24 Duracja nieskończonego ciągu jednakowych przepływów

25 Współczynnik P’/P dla nieskończonego ciągu przepływów

26 Wypukłość obligacji podejście propedeutyczne (Wzrost stopy dochodu (YTM) powoduje spadek wartości (ceny) obligacji, zaś spadek YTM powoduje wzrost jej wartości.) Wzrost wartości obligacji wywołany spadkiem YTM o 1 punkt procentowy jest większy niż spadek jej wartości wywołany wzrostem YTM o 1 punkt procentowy

27 Zależność ceny obligacji od rentowności (oś X)

28 Cena obligacji a rentowność (wykres 1) Zmiana ceny przy zmianie rentowności o 1 punkt procentowy (wykres 2)

29 Współczynnik wypukłości C

30 Wzór Taylora dla dwóch składników

31 Wypukłość nieskończonego ciągu przepływów

32 Wypukłość nieskończonego ciągu jednakowych przepływów C t =C, t=1,2,…

33 Przybliżona wartość wyceny aktywa z użyciem duracji i wypukłości   Pp

34 Wrażliwość wyceny (wartości bieżącej przyszłych przepływów) na zmianę stopy procentowej z uwzględnieniem duracji i wypukłości Z ostatniego wzoru wynika że jeżeli r wzrośnie o 1 punkt procentowy, to względna procentowa zmiana ceny wyniesie: Jeżeli zaś r spadnie o 1 punkt procentowy to względna procentowa zmiana ceny wyniesie

35 Wrażliwość wyceny na zmianę stopy rocentowej z uwzględnieniem duracji i wypukłości Analogicznie można stwierdzić że, jeżeli r wzrośnie o p punktów procentowych, to względna zmiana ceny maleje o ( p D M – C p 2 / 200 ) % Jeżeli r spadnie o p punktów procentowych, to względna zmiana ceny wzrośnie o ( p D M + Cp 2 / 200 ) %

36 Duracja ciągu przepływów przy kapitalizacji ciągłej

37 Duracja jako funkcja zmiennej delta

38 Duracja jako funkcja zmiennej delta (  ) - kapitalizacja ciągła   Wniosek 1. Przy kapitalizacji ciągłej duracja jest malejącą funkcją zmiennej .   Wniosek 2. Duracja (przy kapitalizacji rocznej) jest malejącą funkcją zmiennej r (złożenie funkcji rosnącej i malejącej jest funkcją malejącą)

39 Efektywna duracja   Jeśli wycena instrumentu (ciągu przepływów nie jest możliwa) ze względu np.. na zależność wielkości przepływów od zmiennej stopy procentowej lub brak możliwości ustalenia chwili przepływów (opcja przedterminowego wykupu), wówczas obliczamy tzw. efektywną durację według wzoru

40 Efektywna wypukłość   W podobnej sytuacji definiujemy efektywną wypukłość jako   Jest to przybliżenie wypukłości definiowanej jako C=P’’/P


Pobierz ppt "INSTRUMENTY DŁUŻNE. Cena brudna obligacji  Obligacje są notowane na giełdzie.  Cena giełdowa (rynkowa) podawana jest procentowo w stosunku do wartości."

Podobne prezentacje


Reklamy Google