Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

GEOSTATYSTYKA Wykłady dla III roku Geografii specjalność – geoinformacja Estymacja na podstawie danych jednej zmiennej I Alfred Stach Instytut Paleogeografii.

Коpie: 1
GEOSTATYSTYKA I ANALIZA PRZESTRZENNA Wykład dla III roku Geografii specjalność - geoinformacja Alfred Stach Instytut Geoekologii i Geoinformacji Wydział

Podobne prezentacje


Prezentacja na temat: "GEOSTATYSTYKA Wykłady dla III roku Geografii specjalność – geoinformacja Estymacja na podstawie danych jednej zmiennej I Alfred Stach Instytut Paleogeografii."— Zapis prezentacji:

1 GEOSTATYSTYKA Wykłady dla III roku Geografii specjalność – geoinformacja Estymacja na podstawie danych jednej zmiennej I Alfred Stach Instytut Paleogeografii i Geoekologii Wydział Nauk Geograficznych i Geologicznych UAM

2 Podstawy krigingu Problem: Estymacja wartości ciągłej cechy z w dowolnej lokalizacji u z wykorzystaniem jedynie istniejących n danych z na obszarze badań A : {z(u ), =1,...., n} Rozwiązanie: Kriging to nazwa własna grupy algorytmów opartych na uogólnionej regresji metodą najmniejszych kwadratów, przyjęta przez geostatystyków dla uhonorowania pionierskich prac południowoafrykańskiego geologa Danie Krige (1951)

3 Podstawy krigingu Wszystkie estymatory krigingowe są wariantami podstawowej formuły regresji liniowej zgodnie z poniższym wzorem: gdzie: (u) jest wagą przypisaną do danej z(u ), która jest interpretowana jako realizacja Zmiennej Losowej Z(u ). Wartości m(u) i m(u ) to oczekiwane wartości ZL Z(u) i Z(u ).

4 Podstawy krigingu Ilość danych używanych do estymacji oraz ich wagi mogą się zmieniać przy kolejnych lokalizacjach. W praktyce używane jest jedynie n(u) danych leżących najbliżej lokalizacji punktu estymacji, to jest dane znajdujące się w określonym sąsiedztwie/oknie W(u) mający swoje centrum w u. Interpretacja nieznanej wartości z(u) i wartosci danych z(u ) jako realizacji ZL Z(u) i Z(u ) pozwala na zdefiniowanie błędu estymacji jako zmiennej losowej Z * (u) – Z(u). Wszystkie zalety krigingu wynikają z tego samego założenia minimalizacji wariancji (błędu) estymacji przy respektowaniu warunku nieobciążenia estymatora, czyli:

5 Podstawy krigingu jest minimalizowany przy uwzględnieniu ograniczenia, że: Estymacja za pomocą krigingu może się różnić ze względu na przyjęty model Funkcji Losowej Z(u). Przyjmuje się zazwyczaj, że FL Z(u) można rozłożyć na dwa komponenty: trend m(u) i resztę R(u):

6 Podstawy krigingu Składowa resztowa jest modelowana jako stacjonarna FL o średniej równej zero i kowariancji C R (h): Oczekiwana wartość ZL Z w lokalizacji u jest zatem równa wartości składowej trendu w tej lokalizacji:

7 Podstawy krigingu W zależności od przyjętego modelu trendu m(u) możemy wyróżnić trzy warianty krigingu: 1. Prosty kriging (Simple Kriging) zakłada że średnia m(u) jest znana i stała na całym analizowanym obszarze A : 2. Zwykły kriging (Ordinary Kriging) uwzględnia lokalne fluktuacje średniej, ograniczając domenę stacjonarności średniej do lokalnego sąsiedztwa (ruchomego okna) W(u): w przeciwieństwie do SK w tym przypadku średnia jest traktowana jako nieznana.

8 Czy lokalna średnia jest w przypadku danych satelitarnych ze Spitsbergenu stała? Próbka losowa, zmienna b1_03b Próbka losowa, zmienna b3n_03b

9 Podstawy krigingu 3. Kriging z trendem (Kriging with a Trend model) zakłada że nieznana lokalna średnia m(u´) zmienia się stopniowo wewnątrz każdego lokalnego sąsiedztwa (okna) W(u), a zatem również w całym obszarze A. Składowa trendu jest modelowana jako liniowa funkcja współrzędnych f k (u): Współczynniki a k (u´) są nieznane, lecz zakłada się, że są one stałe w obrębie każdego lokalnego sąsiedztwa W(u). Przyjęto, że f 0 (u´) = 1, tak więc przypadek gdzie K = 0 jest odpowiednikiem zwykłego krigingu (stała lecz nieznana średnia a 0 ).

10 Prosty kriging (SK) Modelowanie składowej trendu (-owej) m(u) jako znanej stacjonarnej średniej m pozwala na zapisanie formuły estymatora jako liniowej kombinacji (n(u)+1) danych: n(u) ZL Z(u ) i wartości średniej m: n(u) wag jest w taki sposób wyznaczane, aby zminimalizować wariancję błędów uwzględnia- jąc kryterium nieobciążenia estymatora.

11 Prosty kriging Estymator prostego krigingu (SK) jest z góry nieobciążony ponieważ średni błąd jest równy 0. Używając pierwszej formy zapisu estymatora SK możemy stwierdzić, że: Estymacja metodą prostego krigingu wykonywana jest za pomocą układu n(u) równań liniowych znanych pod nazwą układu zwykłych równań, które można zapisać używając kowariancji zmiennej z w postaci:

12 Prosty kriging Wariancja błędu – wariancja SK: Prosty kriging – notacja macierzowa Układ równań SK można również zapisać w postaci macierzowej: Gdzie K SK jest macierzą kowariancji danych o wymiarach n(u) n(u), SK jest wektorem wag SK, a k SK jest wektorem kowariancji dane-do-nieznanej

13 Prosty kriging – notacja macierzowa

14 Wagi krigingowe wymagane do estymacji SK są obliczane przez mnożenie odwrotności macierzy kowariancji danych przez wektor kowariancji dane-do-nieznanej: Odpowiedni zapis macierzowy wariancji krigingowej SK jest następujący:

15 Prosty kriging System równań SK ma jednoznaczne rozwiązanie i wynikowa wariancja krigingowa jest dodatnia, jeżeli macierz kowariancji K SK = [C(u - u )] jest pozytywnie określona, czyli w praktyce: żadna para danych nie ma takiej samej lokalizacji: u u dla zastosowano dopuszczalny model kowariancji C(h) Podstawowe cechy estymatora SK Jest to estymator wierny – to znaczy, że wartość estymowana w lokalizacji punktu danych jest jemu równa, Jeśli lokalizacja estymacji znajduje się poza zasięgiem autokorelacji w stosunku najbliższego punktu danych wartość estymowana jest równa stacjonarnej średniej m

16 Prosty kriging – przykłady Korzystając z relacji: C(h) = C(0) - (h) Estymacja cechy w punkcie 0 za pomocą danych pomiarowych z punktów 1,2 i 3.

17 Prosty kriging – przykłady Prosty kriging dla modelu z zerowym efektem nuggetowym i izotropowym wariogramem sferycznym o trzech różnych zasięgach. ZasięgWaga ,7810,0120, ,648-0,0270, ,000

18 Prosty kriging – przykłady Prosty kriging dla modelu z izotropowym wariogramem sferycznym o zasięgu 10 jednostek odległości i trzech różnych względnych udziałach wariancji nuggetowej Nugget= Waga % 0,7810,0120,065 25% 0,4680,2030,064 75% 0,1720,1300, % 0,000

19 Prosty kriging – przykłady Prosty kriging dla sferycznego modelu z 25% nuggetem i zasięgiem głównej osi wynoszącym 10 jednostek odległości w przypadku trzech różnych stosunków anizotropii Anizo- tropia= Waga :1 0,4680,2030,064 2:1 0,3950,0870,141 5:1 0,152-0,0550,232 20:1 0,000 0,239

20 Prosty przykład estymacji SK Dane jednowymiarowe: profil 7 punktów b1_03b przy Y = 240 m Izotropowy model semiwariancji obliczony dla wszystkich 256 danych

21 Prosty przykład estymacji SK Dane jednowymiarowe: profil dla Y = 240 m

22 Prosty kriging – zmienna b1_03b

23

24

25 Weryfikacja jakości modelu -kroswalidacja

26

27 Weryfikacja jakości modelu – walidacja podzbioru


Pobierz ppt "GEOSTATYSTYKA Wykłady dla III roku Geografii specjalność – geoinformacja Estymacja na podstawie danych jednej zmiennej I Alfred Stach Instytut Paleogeografii."

Podobne prezentacje


Reklamy Google