Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Sygnał o czasie ciągłym t. Dyskretyzacja czasu częstotliwość próbkowania.

Podobne prezentacje


Prezentacja na temat: "Sygnał o czasie ciągłym t. Dyskretyzacja czasu częstotliwość próbkowania."— Zapis prezentacji:

1 Sygnał o czasie ciągłym t

2 Dyskretyzacja czasu częstotliwość próbkowania

3 częstotliwość sygnału równa częstotliwości próbkowania Z(0)=1

4 częstotliwość sygnału równa połowie częstotliwości próbkowania częstotliwość Nyquista

5 częstotliwość sygnału dyskretnego

6 W jaki sposób wydobyć informację dotyczącą amplitudy i częstotliwości (szybkości obrotu) wektora?

7 Posiłkujemy się wektorami pościgowymi o amplitudzie 1 i różnych szybkościach wirowania i po cichu liczymy że wektor mierzony (nasz sygnał) zsynchronizuje się z którymś z nich.

8 pierwszy wektor stoi w miejscu ! 1 amplituda sygnału

9 drugi wektor częstotliwość sygnału jest taka sama. Zatem ten wektor jest zgodny w fazie z sygnałem

10 trzeci wektor obrotowi sygnału o 90 stopni odpowiada obrót wektora pościgowego o 180 stopni

11 czwarty wektor obrotowi sygnału o 90 stopni odpowiada obrót wektora pościgowego o 270 stopni

12 piąty wektor jest taki sam jak wektor pierwszy Cztery wektory wystarczą nam w zupełności

13 Zsumujmy iloczyny położeń końca wektora sygnału i wektora pościgowego suma=A+Ai-A-Ai=0 k=0 1*A A k=1 1*A*i k=2 1*-A 1*A*(-i) k=3

14 suma=A-A+A-A=0 k=0 1*A A k=1 1i*Ai k=2 -1*-A -1i*-Ai k=3 źle ! Akurat ten wektor pościgowy obraca się tak samo szybko jak wektor sygnału a nam wyszło zero.

15 suma=A+A+A+A=4A k=0 1*A A k=1 -1i*Ai k=2 -1*-A 1i*-Ai k=3 już lepiej Mała poprawka: wektor pościgowy zastępujemy wektorem sprzężonym z nim

16 suma=A-Ai-A+Ai=0 k=0 1*A A k=1 -1*Ai k=2 1*-A -1*-Ai k=3 Ten wektor pościgowy ma inną częstotliwość niż sygnał i korelacja dała w wyniku zero

17 suma=A-A+A-A=0 k=0 1*A A k=1 1i*Ai k=2 -1*-A -1i*-Ai k=3 Ten wektor pościgowy ma inną częstotliwość niż sygnał i korelacja dała w wyniku zero

18 zbieramy wszystko razem: suma=0 suma=4A suma=0 Rzeczywista częstotliwość sygnału nie ma znaczenia dla naszych obliczeń ponieważ wszystko odnosiliśmy do częstotliwości próbkowania

19 częstotliwość amplituda Możemy to narysować: 0fp/4fp/23/4fpfp 4AWidmo amplitudowe

20 Wykonaliśmy 4 punktowe Dyskretne Przekształcenie Fouriera (DFT)


Pobierz ppt "Sygnał o czasie ciągłym t. Dyskretyzacja czasu częstotliwość próbkowania."

Podobne prezentacje


Reklamy Google