Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

,,Noc jest przedsionkiem dnia. Osoba Talesa. Badania astronomiczne Talesa. Badania matematyczne Talesa. Jak zmierzono piramidy? Jak ustalić wielkość

Podobne prezentacje


Prezentacja na temat: ",,Noc jest przedsionkiem dnia. Osoba Talesa. Badania astronomiczne Talesa. Badania matematyczne Talesa. Jak zmierzono piramidy? Jak ustalić wielkość"— Zapis prezentacji:

1 ,,Noc jest przedsionkiem dnia

2

3 Osoba Talesa. Badania astronomiczne Talesa. Badania matematyczne Talesa. Jak zmierzono piramidy? Jak ustalić wielkość budynków nie mierząc ich ?

4

5 Tales urodził się w Milecie, stolicy starożytnej greckiej prowincji Jonia, nad morzem Egejskim około p.n.e. Wywodził się z zamożnej i wpływowej rodziny Thelidów. Jest określany jako astronom, technik, kupiec, matematyk, meteorolog, polityk, teolog a przede wszystkim filozof. Jeden z twórców tzw. szkoły jońskiej.

6

7 Według Talesa każda rzecz materialna składała się z wody, czy to kamień, zwierzę czy drzewo. Każda rzecz, istota była tylko przejawem zmiany formy wody. Dodatkowo twierdził, że przemiana wody w inną formę (np. padłego zwierzęcia w rośliny i innych destruentów) nie potrzebuje żadnej energii zewnętrznej, wyższej, jaką mogłaby stanowić dusza. A zatem materia (woda), była również duszą. Albo inaczej, Tales nie wprowadzał podziałów na ciało i dusze, który bardzo często miał miejsce wśród jego następców i naśladowców.

8

9 Tales przewidział zaćmienie Słońca 22 V 585 r. p.n.e.. Stwierdził on także, że Księżyc świeci światłem odbitym. Przedstawił również swój model świata, jako płytę pływającą po oceanie.

10

11 Miał odkryć drogę słońca między punktami przesileń i stosunek średnic słońca i księżyca do długości ich orbit. Zajmował się także zagadnieniem przesileń i dostrzegł, że ich cykl jest nierówny - w związku z tym wyznaczane przez przesilenia i równonoce pory roku nieznacznie różnią się długością

12

13

14 Talesowi z Miletu przypisuje się wiele twierdzeń, m.in. średnica dzieli okrąg na połowy dwa kąty przy podstawie trójkąta równoramiennego są równe kąt wpisany na półokręgu jest kątem prostym trójkąt jest określony, jeżeli dana jest jego podstawa i kąty przy podstawie

15

16

17 Pewnego dnia Tales opuścił Milet i udał się do Egiptu. Po kilku dniach podróży zobaczył piramidę Cheopsa. Tales nigdy nie widział czegoś równie wspaniałego. Piramida Cheopsa była budowlą,której nie dało się zmierzyć! Tales postanowił podjąć wyzwanie, postanowił zmierzyć piramidę.

18 stosunek pomiędzy mną a moim cieniem jest dokładnie taki sam jak pomiędzy piramidą a jej cieniem Tales obserwował swój własny cień przesuwający się na zachód. Obserwował swój cień i zrozumiał, że słońce traktuje wszystkie rzeczy tego świata jednakowo, traktując w ten sam sposób maleńkiego człowieka i gigantyczną piramidę stwarza możliwość ustalenia dla nich wspólnej miary. W głowie Talesa pojawiła się myśl:,, stosunek pomiędzy mną a moim cieniem jest dokładnie taki sam jak pomiędzy piramidą a jej cieniem.

19 Oto znalazł rozwiązanie. Pion jest dla mnie nie osiągalny? Dotrę do niego przez poziom. Nie mogę zmierzyć wysokości, która ginie w przestworzach? Zmierzę jej cień spłaszczony na ziemi. Zmierzyć duże małym. Niedostępne dostępnym. Odległe zmierzyć bliskim. Tales dokonał pomiaru mając do dyspozycji kawał sznura i przyjmując za jednostkę miary swój wzrost – posłużył się talesem. Zapisał wynik: Piramida Cheopsa mierzy osiemdziesiąt pięć talesów.

20

21 Tales, by zmierzyć piramidę musiał pozbawić piramidę jej ciała, zapomnieć o masie budowli, wymazać ją i pamiętać o niej tylko wtedy, kiedy miała związek z postawionym pytaniem. Po pozbawieniu piramidy ciała otrzymujemy znany nam schematyczny rysunek ilustrujący twierdzenie Talesa. Po przesunięciu Talesa mamy nasze twierdzenie.

22

23

24 Maszt który ma wysokość 6 metrów rzuca cień o długości 8,5 m. W tym samym czasie w tej samej miejscowości pewien budynek rzuca cień długości 37 m. Jaką wysokość ma ten budynek? x – wysokość budynku Rozwiązanie: x=(37 6) : 8,526,1m Odp. Budynek ma ok. 26,1 m wysokości.

25 Budka telefoniczna rzuca cień o długości 6,25m. W tym samym czasie stojący obok chłopiec rzuca cień o długości 4m. Oblicz wysokość budki jeżeli chłopiec ma 1,6m wzrostu. x – wysokość budki Rozwiązanie: Odp. Budka ma 2,5 m wysokości.

26 Dane: Wysokość Heleny – 1,6 m Długość cienia Heleny – 2,4 m Długość cienia drzewa – 7,2 m Wysokość drzewa – x Rozwiązanie: x 1,6 7,2 2,4 x=(7,2 1,6):2,4=4,8 Odp.: Drzewo ma wysokość 4,8m

27 Do pomostu przycumowano łódkę. Długość pomostu wynosi 24 m. Chłopiec o wzroście 1,7o m stoi 3 m od początku pomostu. Oblicz wysokość części masztu łódki wystającej nad pomostem, która znajduje się w odległości 7,5 m od końca pomostu.

28 |AC| =24-3-7,5=13,5 |CF| = (16,5 1,7) : 3 = 9,35 Odp.: Część masztu wystająca nad pomostem wynosi 9,35 m.

29 Tales potrafił obliczyć odległość statku od brzegu. Jego pomiar można opisać następująco. Tales staną na brzegu w punkcie M, leżącym najbliżej statku N i przeszedł wzdłuż brzegu 40 m – do punktu A. Tam wbił tyczkę i poszedł 10 kroków dalej – do punktu B. Stamtąd szedł w głąb lądu do takiego punktu C, z którego statek i wbitą tyczkę widać w jednej linii. Oblicz jak daleko od brzegu był statek, jeśli z punktu B do punktu C Tales szedł 24 m.

30 Dane: |MA| = 40 m |AB| = 10 m |BC| = 24 m Szukane: |MN|= ? Rozwiązanie: |MN|= (40 24) : 10 = 96 Odp.: Statek od brzegu był oddalony o 96 m.

31 Dane: x - szerokość rzeki a = 11,5 m b = 30 m c = 45 m Obliczenia: x x+b ab a c c-a _ = ___ x = Odp.: Szerokość rzeki wynosi ok. 10, 3 m. x 10,3 m

32 Wikipedia Ściąga Bryk matematyczny.pl/images/staroz/mat/ tales1.gif son/19/15.gif yka/grafika/rysunek172.jpg ia/commons/thumb/4/49/Triangle_w ith_notations_2.svg/200px- Triangle_with_notations_2.svg.png /image010.jpg cia/studnia.jpg

33 Prezentację przygotowali uczniowie klasy II b : Gabriela Bury Urszula Bury Ewelina Gdula Kinga Skowronek Artur Skubisz

34


Pobierz ppt ",,Noc jest przedsionkiem dnia. Osoba Talesa. Badania astronomiczne Talesa. Badania matematyczne Talesa. Jak zmierzono piramidy? Jak ustalić wielkość"

Podobne prezentacje


Reklamy Google