Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.

Podobne prezentacje


Prezentacja na temat: "Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt."— Zapis prezentacji:

1 Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt Z FIZYKĄ, MATEMATYKĄ I PRZEDSIĘBIORCZOŚCIĄ ZDOBYWAMY ŚWIAT !!! jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK – NAJLEPSZA INWESTYCJA

2 DANE INFORMACYJNE (DO UZUPEŁNIENIA) Nazwa szkoły: Gimnazjum nr 24 w ZS nr 2 w Szczecinie ID grupy:98/86 Opiekun: Monika Pieniak Kompetencja: Matematyczno-fizyczna Temat projektowy: Zrozumieć ruch Semestr/rok szkolny: 2/2010/2011 1

3 Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt Z FIZYKĄ, MATEMATYKĄ I PRZEDSIĘBIORCZOŚCIĄ ZDOBYWAMY ŚWIAT !!! jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK – NAJLEPSZA INWESTYCJA

4 ZROZUMIEĆ RUCH

5 CO TO JEST RUCH ? ? ? Ruch to zmiana położenia ciała w stosunku do innego ciała traktowanego jako układ odniesienia

6 JAK TO SIĘ ZACZĘŁO... Od najdawniejszych czasów ludzie obserwowali zmiany zachodzące w otaczającym ich świecie. Zmieniały się pory roku, zmieniała przyroda, zmieniali się i oni sami, podlegając procesowi starzenia się. Jednym z pierwszych filozofów, którzy starali się zrozumieć i opisać zmienność świata, był filozof grecki Heraklit z Efezu (około roku p.n.e), autor słynnego powiedzenia panta rei (wszystko płynie), obrazującego nieustanne zmiany zachodzące w przyrodzie. Ze zmianami wiązano też zjawisko ruchu, jedno z ważniejszych zagadnień będących przedmiotem zainteresowania filozofów w starożytnej Grecji. Istotną trudność sprawiało antycznym myślicielom powiązanie pojęcia położenia z pojęciem ruchu. Doprowadziło to do sformułowania przez Zenona z Elei (około roku p.n.e) słynnych czterech paradoksów, czyli pozornych sprzeczności w opisie ruchu. Jednym z nich był paradoks żółwia i Achillesa. Achilles, bohater Iliady Homera, jeden z najdzielniejszych Greków walczących pod Troją, nigdy nie dogoni żółwia, jeśli żółw nieco wcześniej rozpocznie wyścig. Gdy Achilles dobiegnie do miejsca, z którego wystartował żółw, żółwia już tam nie będzie, bo przesunął się w tym czasie w inne miejsce. Achilles musi znów dobiec w miejsce, gdzie żółw był przed chwilą, ale ten przesunął się już do przodu. Taka sytuacja będzie się ciągle powtarzać. Goniącego i uciekającego zawsze będzie dzielić jakaś odległość. Najszybszy biegacz nigdy nie dogoni najwolniejszego.

7 CIĄG DALSZY.. Zagadnieniem ruchu zajmował się też jeden z najwybitniejszych filozofów starożytnych- Arystoteles ze Stagiry ( rok p.n.e). Według Arystotelesa ruchy ciał dzieliły się na naturalne i wymuszone. Do naturalnych zaliczał ruch ciał niebieskich oraz ruchy, dzięki którym ciała uzyskiwały swoje naturalne położenie. Dla ciał ciężkich naturalnym położeniem jest ziemia, więc spadają na nią, ciała lekkie takie jak dym z ogniska czy para wodna, unoszą się w górę, bo tam jest ich naturalne miejsce. Poglądy te uważano za słuszne przez prawie 2 tysiące lat, aż do XVII wieku, do czasów Galileusza, który wykazał, jak Arystoteles się mylił. Galileusz ( ) był pierwszym fizykiem, który rozumiał rolę doświadczenia w badaniu zjawisk przyrody. Jako pierwszy stosował metodę badań obowiązującą dziś w naukach przyrodniczych, polegającą na doświadczalnym weryfikowaniu teorii naukowej. Galileuszowi zawdzięczamy m.in. Sformułowanie zasady względności ruchu, poprawny opis swobodnego spadania ciał, udowodnienie, że torem ruchu pocisku jest parabola. Przedstawiona tu krótka historia poglądów na ruch i jego przyczyny świadczy wyraźnie o tym, że tworzenie systemu wiedzy odbywa się powoli, krok po kroku, a poglądy antycznych filozofów, były niezbędnym ogniwem w procesie tworzenia dzisiejszej wiedzy o przyrodzie.

8 RUCH PO OKRĘGU Ruch po okręgu jest przykładem ruchu zachodzącego w dwóch wymiarach. Przy czym (oczywiście) torem ruchu po okręgu jest okrąg. Ruch ten zazwyczaj znacznie bardziej skomplikowany do opisania od ruchu prostoliniowego, m.in. dlatego, że mamy tu do czynienia ze składową przyspieszenia działającą prostopadle do kierunku ruchu. Gdyby chcieć dokładnie opisywać położenie punktu poruszającego się po okręgu posługując się kartezjańskim układem XY, wtedy trzeba by wciąż używać funkcji trygonometrycznych sinus i kosinus. Znacznie częściej stosowanym podejściem jest posługiwanie się w tym przypadku kątem obrotu. W oparciu o tę wielkość wprowadza się specjalny układ (różny od kartezjańskiego) – układ biegunowy (lub w wydaniu 3 - wymiarowym - walcowy). Prędkość w ruchu po okręgu może być liniowa =2 rf lub kątowa =2 f Na ciało w ruchu po okręgu działa siła dośrodkowa F=m ²:r Przyspieszenie w tym ruchu wynosi a= ²:r Najprostszym przypadkiem ruchu po okręgu jest ruch jednostajny po okręgu.

9 RUCH JEDNOSTAJNIE PRZYSPIESZONY PO LINII PROSTEJ Jest to ruch, w którym prędkość zmienia się tak samo w każdej sekundzie, czyli przyspieszenie jest stałe 1)a= t 2)s=Vot+½a·t² 3)V=Vo+at 4)Wykres drogi od czasu 5)Wykres prędkości od czasu 6) Wykres przyspieszenia od czasu Vx Vo a 0 t

10 Jest to ruch, w którym przyspieszenie jest stałe, lecz zwrócone przeciwnie do wektora prędkości. 1)V=Vo-a·t 2) s=Vot-½at² 3) a= t Wykres a(t) Wykres V(t) Wykres S(t) Vo 0t t0 t a t -a

11 Przyspieszenie informuje o tym jak szybko zmienia się prędkość Prędkość początkowa V o a t Prędkość końcowa V k Im większe jest przyspieszenie, tym dłuższy wektor jest dodawany do wektora prędkości początkowej.

12 DROGA Jest to długość pewnego odcinka toru, czyli linii kreślonej przez dowolnie wybrany punkt poruszającego się ciała Symbol: s Jednostka: metr (m)

13 RUCH PRZYSPIESZONY RUCH OPÓŹNIONY JEDNOSTAJNIE PRZYSPIESZONY NIEJEDNOSTAJNIE PRZYSPIESZONY NIEJEDNOSTAJNIE OPÓŹNIONY JEDNOSTAJNIE OPÓŹNIONY menu RUCH ZMIENNY RUCH JEDNOSTAJNY RUCH PROSTOLINIOWY RUCH JEDNOSTAJNY PO KRZYWEJ RUCH ZMIENNY PO KRZYWEJ Ruch postępowy

14 SZYBKOŚĆ Określa jaką drogę przebywa ciało w jednostce czasu Jednostka: m/s Symbol: v

15 PRZYSPIESZENIE Określa, o ile zmienia się szybkość w jednostce czasu Jednostka: m/s 2 Symbol: a

16 PRZYSPIESZENIE Jeśli prędkość zmienia się gwałtownie to przyspieszenie jest duże. Jeśli prędkość zmienia się powoli to przyspieszenie jest niewielkie. Jeśli prędkość nie zmienia się to przyspieszenie jest równe zeru. przyspieszenie = zmiana prędkości/czas a = v 2 -v 1 /t

17 PODZIAŁ RUCHÓW (1)

18 PODZIAŁ RUCHÓW (2)

19 RUCH JEDNOSTAJNY CECHY droga jest proporcjonalna do czasu trwania ruchu prędkość ma stałą wartość przyspieszenie ma wartość zero

20 Ruch jednostajny wykresy

21 Ruch jednostajnie przyspieszony-cechy droga jest proporcjonalna do kwadratu czasu szybkość jest proporcjonalna do czasu przyspieszenie ma stałą dodatnią wartość

22 Ruch jednostajnie przyspieszony wykresy

23 Droga wzory Ruch jednostajny prostoliniowy s = vt Ruch jednostajnie opóźniony s = v o t - at 2 /2 Ruch jednostajnie przyspieszony s = v o t + at 2 /2

24 Szybko ść wzory Ruch jednostajny prostoliniowy v = s/t Ruch jednostajnie opóźniony v = v o -at Ruch jednostajnie przyspieszony v = v o +at

25 Czas i jego jednostki Fizycy czas oznaczają we wzorach literą t od jego angielskiej nazwy "time". Niekiedy może on pomylić się z temperaturą też oznaczaną tą literą. Dlatego w niektórych wzorach czas oznaczany jest grecką literą "tau" τ. Sekunda Jednostką czasu w układzie SI jest sekunda [t] = s. Rodowód tej jednostki jest stosunkowo prosty do wymyślenia. Punktem wyjścia jest tu oczywiście naturalna jednostka czasu - doba, mająca 24 godziny, a w każdej godzinie jest 3600 sekund. Początkowo więc sekunda była zdefiniowana jako 1/86400 doby (24 razy 3600 = 86400). Jednak okazało się, że taka jednostka nie jest zbyt precyzyjna. Powodów jest kilka – pierwszy z nich, to np. fakt, że mamy aż dwie doby – dobę słoneczną i dobę gwiazdową, a różnią się one o prawie 4 minuty. Skąd ta różnica? Czas

26 - doba Doba słoneczna odpowiada czasowi, w którym Ziemia tak okręci się wokół swojej osi, że dany punkt na jej powierzchni znajdzie się dokładnie na odcinku środek Ziemi – środek Słońca. Czyli będzie to np. czas od południa jednego dnia, do południa dnia następnego. Problem w tym, że gdyby ów punkt określać nie według położenia Słońca, ale względem jakiejś innej gwiazdy, to doba wyszłaby nam krótsza (właśnie o te niecałe 4 minuty). Wynika to z faktu, że Ziemia krąży wokół Słońca, a ruch po orbicie jest (gdy go obserwować z zewnątrz) także powiązany z pewną formą ruchu wirowego. Dzięki niemu przez rok nasza Planeta wykonuje jakby dodatkowy obrót wokół swojej osi. Ostatecznie więc dób gwiazdowych (liczonych względem gwiazd innych niż Słońce) jest w ciągu roku o jedną mniej niż słonecznych. Oczywiście ten problem wyznaczania sekundy można łatwo usunąć, precyzując o którą dobę chodzi. Dlatego też początkowo 1 sekunda była definiowana jako: 1/ długości średniej doby słonecznej. Zegar słoneczny Ale pojawia się następny problem sugerowany w tej definicji przez słowo średniej. Bo skoro średniej, to możemy się domyśleć, że doba może się zmieniać – nie jest stała. I tak właśnie jest - bardzo dokładne przyrządy wykazują zmiany prędkości ruchu wirowego Ziemi. Niestety, słowo średnia staje się przyczyną kolejnych nieścisłości – jaka to miałaby być średnia? – z wieku, z tysiąclecia, z którego wieku czy tysiąclecia?...

27 KażdyDlatego dzisiaj uczeni posługują się jednostką niezależną od zjawisk astronomicznych. W układzie SI od roku 1967, jako wzorzec obowiązuje tzw. sekunda atomowa: Sekunda, s - jednostka czasu równa okresom przejścia pomiędzy podpoziomami f = 3 i f = 4 struktury nadsubtelnej poziomu podstawowego 2s1/2 atomu 133Cs znajdującego się na poziomie morza. Definicja atomowa oparta jest o zjawisku emisji światła (dokładniej promieniowania elektromagnetycznego). Światło jest rodzajem drgań pola elektromagnetycznego, a każde takie drganie trwa określoną ilość czasu. Jeśli więc weźmiemy odpowiednią ilość takich drgań to dostaniemy w rezultacie niemal dowolny odstęp czasu (byle nie krótszy niż pojedyncze drganie). Okazuje się, że światło emitowane przez pierwiastek cez jest bardzo jednorodne i stabilne, dzięki czemu dobrze nadaje się na wzorzec. Żeby zaś ta nowa definicja sekundy dobrze zgadzała się ze starą, opartą na średniej dobie słonecznej trzeba wziąć właśnie takich drgań Część definicji traktująca o podpoziomach struktury nadsubtelnej precyzuje po prostu o które promieniowanie atomu cezu chodzi. Ponieważ cez może wytwarzać różne rodzaje promieniowania (czyli różne barwy światła różniącego się czasem drgań), a każdy rodzaj promieniowania odpowiada przejściom pomiędzy różnymi poziomami energetycznymi, to należy uściślić, że chodzi o ten jeden konkretny rodzaj przejścia - czyli przejście z podpoziomu energetycznego o f = 3 na poziom o f = 4.

28 1 metr jest równy drodze jaka przebywa w próżni światło w ciągu czasu 1/ sekundy. Jednostki pochodne metra np.: 1 pm = m 1 nm = m 1 mm = 0,001 m = m 1 cm = 0,01 m 1 km = 1000 m DŁUGOŚĆDŁUGOŚĆ Jednostka długości Standardowo, odległość (długość) mierzymy w metrach i oznaczam literą małe em - m. A cóż to jest jeden metr? - początkowo został on zdefiniowany jako 1/ część ćwiartki ziemskiego południka (dlatego obwód Ziemi jest dziś równy dość dokładnie km), później zdecydowano się na wzorzec związany z długością platyno – irydowej szyny zamkniętej w Sevres pod Paryżem (iryd – pierwiastek metaliczny – element stopu, z którego wykonano wzorzec), a od lat 80-tych XX wieku metr wynika z odległości jaką przebywa światło w próżni. Inne jednostki odległości W niektórych krajach świata do pomiaru odległości stosuje się inne niż metr jednostki. 1 mila angielska = 1,609 km 1 mila morska = 1, km 1 yard = 0,9144 m 1 jednostka astronomiczna (AU). 1 AU = 1, m

29 W astronomii najczęściej stosuje się jednostki oparte nie o metr, ale o czas w jakim światło przebywa drogę: rok świetlny - jest to odległość jaka światło przebywa w ciągu roku. 1R.ś. = AU = 9, m jednostka astronomiczna (AU, j.a.) - wielkość równa średniej odległości od Ziemi do Słońca. Bardziej ściśle określa się ją jako długość wielkiej półosi orbity Ziemi wokół Słońca. 1 AU = 1, m. Pomiary odległości Do mierzenia odległości używa się różnych przyrządów w zależności od tego jaki obiekt, w jakich warunkach i jak dokładnie musimy wymierzać. Odległości centymetrowo – milimetrowe mierzymy najczęściej miarką, zwaną też przymiarem liniowym. W budownictwie do wyznaczania odległości używana jest specjalna rozkładana lub rozsuwana wersja miarki – przymiar składany lub taśma miernicza, a w geodezji taśma geodezyjna. Aby zmierzyć odległości zbliżone lub mniejsze od 1 mm, posługujemy się śrubą mikrometryczną, lub suwmiarką.

30 Tak wyglądała nasza praca na zajęciach

31

32

33


Pobierz ppt "Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt."

Podobne prezentacje


Reklamy Google