Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Wykład IV Teoria pasmowa ciał stałych. Krzem Podpasma mogą łączyć się, jak np. w Si, gdzie 4 podpasma łączą się w pasmo walencyjne Konfiguracja w izolowanym.

Podobne prezentacje


Prezentacja na temat: "Wykład IV Teoria pasmowa ciał stałych. Krzem Podpasma mogą łączyć się, jak np. w Si, gdzie 4 podpasma łączą się w pasmo walencyjne Konfiguracja w izolowanym."— Zapis prezentacji:

1 Wykład IV Teoria pasmowa ciał stałych

2 Krzem Podpasma mogą łączyć się, jak np. w Si, gdzie 4 podpasma łączą się w pasmo walencyjne Konfiguracja w izolowanym atomie Si: 1s 2 2s 2 2p 6 3s 2 3p 2 -Każdy atom ma dwa stany1s dwa 2s, 6sześć stanów 2p, dwa 3s, sześć 3p i wyższe -Dla N atomów, dostępnych jest 2N stanów 1s, 2N stanów 2s, 6N stanów 2p, 2N stanów 3s i 6N stanów 3p -Po zbliżeniu atomów największemu rozszczepieniu ulegają stany 3s i 3p. Stany te mieszają się dając 8N stanów. -Przy odległości równowagowej, pasmo to rozszczepia się na dwa pasma oddzielone przerwą E g. Górne pasmo – przewodnictwa zawiera 4N stanów i dolne – walencyjne, też 4N stanów.

3 Periodyczność sieci i dozwolone pasma energii Izolowane atomy mają dyskretne dozwolone poziomy energetyczne Periodyczność sieci w ciele stałym prowadzi do pojawienia się pasm energetycznych oddzielonych obszarami wzbronionymi + E położenie

4 Twierdzenie Blocha W krysztale funkcje falowe będące rozwiązaniem równania Schrödingera z potencjałem periodycznym U(r) są iloczynem zespolonej fali płaskiej exp(i k·r) (odpowiadającej swobodnemu elektronowi) i funkcji periodycznej u n k(r) (n – liczba całkowita).

5 Niejednoznaczność wektora k. Funkcje Blocha posiadają dziwną własność: zarówno same funkcje jak i odpowiadające im wartości własne energii E obliczone dla k oraz k+G są identyczne: gdzie G jest wektorem sieci odwrotnej: n 1,n 2 i n 3 – liczby całkowite, a i są wektorami podstawowymi sieci krystalicznej, b i są wektorami podstawowymi sieci odwrotnej. Węzły sieci odwrotnej są wyznaczone przez zbiór wektorów G

6 Sieć odwrotna Sieć odwrotna to zbiór wektorów falowych dla których odpowiednie fale płaskie mają okresowość sieci krystalicznej: G·T=2 n lub cos( G·T)=1 gdzie T – wektor translacji Dla sieci 1D, w której odległość między atomami wynosi a: G=2 a

7 Pasmo dozwol. stanów Pasmo dozwolonych stanów Przerwa wzbroniona Ze względu na tę periodyczność, wystarczy ograniczyć się do obszaru od czyli do tzw. I-szej strefy Brillouina Periodyczność E(k) 1D

8 Strefa Brillouina Strefa Brillouina jest figurą gemetryczną, która powstaje z przecięcia symetralnych wektorów łączących sąsiednie punkty sieci odwrotnej. 1 strefa Brillouina 2 strefa Brillouina 2 /a 1D1D 2D sieć regularna.

9 I strefa Brillouina Konstrukcja I strefy Brillouina w przestrzeni 2D, sieć ukośnokątna. I strefa Brillouina dla sieci kubicznej powierzchniowo centrowanej (fcc).

10 E(k) (relacja dyspersji) dla krzemu

11 a) E(k) dla Si (skośna przerwa) i GaAs (prosta przerwa) b)Powierzchnia stałej energii dla Si, w pobliżu 6 minimów pasma przewodnictwa w kierunku punktu X.. E(k) dla Si i GaAs)

12 Półprzewodniki z prostą i skośną przerwą wzbronioną

13 E(k) (relacja dyspersji) dla GaAs i AlAs

14 GaAs (1+x) P x Diody LED wykonane z GaAs 1-x P x dla x = 0.4 świecą na czerwono, dla x = 0.65 – na pomarańczowo, dla x = 0.85 – na żółto i x = 1 – na zielono. GaAs 1-x P x dla składów molowych x<0.42 jest półprzewodnikiem z prostą przerwą wzbronioną. Dlatego prawdopodobieństwo rekombinacji promienistej jest duże. Natomiast dla większych składów – półprzewodnikiem o skośnej przerwie wzbronionej. Stąd czysty GaP nie nadaje się na diody LED. Aby umożliwić rekombinację promienistą w tym krysztale, wprowadza się do niego tzw. domieszkę zlokalizowaną - azot.

15 Pasmo dozwol. stanów Pasmo dozwolonych stanów Przerwa wzbroniona Jak wcześniej wspomniano, ze względu na periodyczność E(k), wystarczy ograniczyć się do obszaru tzw. I-szej strefy Brillouina. Co więcej, w większości półprzewodników pasmo przewodnictwa i pasmo walencyjne w pobliżu swoich krawędzi mają postać jak na rysunku poniżej. Z całej zależności E(k) wycinamy obszar zaznaczony na górnym rys. na czerwono E(k) (relacja dyspersji)

16 Pełne pasmo Puste pasmo Przerwa wzbr. Pełne pasmo Częściowo pełne pasmo Przerwa wzbr. Częściowo pełne p. Częściowo pełne pasmo EFEF IZOLATOR METAL METAL lub półprzewodniklub półmetal EFEF

17 Koncepcja dziury Elektron opisany funkcją Blocha jest naładowaną cząstką biegnącą przez kryształ. W obrazie klasycznym reprezentuje prąd elektryczny. W paśmie całkowicie zapełnionym każdemu elektronowi o wektorze falowym k towarzyszy elektron z -k i odpowiednie przyczynki do prądu znoszą się. Jeśli zabierzemy jeden elektron, to wytworzymy dziurę, ale prąd będzie wówczas różny od zera:

18 Masa efektywna Dla elektronu swobodnego: Dla elektronu w sieci krystalicznej: Dla dziury w sieci krystalicznej:

19 Krzywizna pasma decyduje o masie efektywnej - Masa efektywna elektronów w GaAs w pasmie przewodnictwa jest mniejsza w punkcie (silna krzywizna - duża ) niż w punkcie L lub X ( słabsza krzywizna - mała ) - Elektrony przy wierzchołku pasma walencyjnego mają masę efektywną ujemną (dziury – dodatnią).

20 Prawdziwe (m e, m h ) i efektywne masy (m e *, m h *) - masy efektywne są różne dla różnych półprzewodników - prawdziwe – równe masie elektronu swobodnego - dlaczego ? dp/dt =d(mv)/dt = F : II zasada dynamiki Newtona ! F = F wewn + F zewn F zewn = siła zewnętrzna F wewn = siła wynikająca z istnienia potencjału periodycznego; to oddziaływanie prowadzi do zależności E(k), z której z kolei wynika masa efektywna, m e *. dp/dt =d(m e * v)/dt = F zewn Zatem elektron zachowuje się w polu siły zewnętrznej, tak jakby miał nową masę, m e *.

21 Półprzewodnik w polu elektrycznym


Pobierz ppt "Wykład IV Teoria pasmowa ciał stałych. Krzem Podpasma mogą łączyć się, jak np. w Si, gdzie 4 podpasma łączą się w pasmo walencyjne Konfiguracja w izolowanym."

Podobne prezentacje


Reklamy Google