Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Paradoks partycypacji wyborczej Rafał Miśta Na podstawie tekstu W. Aksztejn Racjonalność wyborcy a paradoks partycypacji. Znaczenie instrumentalnej motywacji.

Podobne prezentacje


Prezentacja na temat: "Paradoks partycypacji wyborczej Rafał Miśta Na podstawie tekstu W. Aksztejn Racjonalność wyborcy a paradoks partycypacji. Znaczenie instrumentalnej motywacji."— Zapis prezentacji:

1 Paradoks partycypacji wyborczej Rafał Miśta Na podstawie tekstu W. Aksztejn Racjonalność wyborcy a paradoks partycypacji. Znaczenie instrumentalnej motywacji dla wyjaśnienia absencji wyborczej w 2005r., Decyzje nr 5, 2006.

2 Model racjonalnego wyboru - 2 funkcje wyborów w systemach demokratycznych: wyłanianie władzy reprezentowanie interesów grup społecznych - Jednostki dążą do maksymalizacji użyteczności z wyłonionego aparatu władzy. - Różnica użyteczności między jedną partią i drugą: dyferencjał partyjny. - Decyzja na podstawie rachunku zysków i strat.

3 Absencja wyborcza Wg Downsa w przypadku braku kosztów związanych z głosowaniem, absencja może mieć miejsce tylko gdy dyferencjał partyjny=0. Jest to jednak założenie nierealistyczne. Kosztami głosu są m.in.: wysiłek i czas na przyjrzenie się programom wyborczym, dotarcie do lokalu, ryzyko ujawnienia swoich preferencji politycznych.

4 Czy zatem racjonalna jednostka powinna iść na wybory? Wyborca staje przed 5 możliwymi sytuacjami: S1 - preferowany przez i-tego wyborcę kandydat wygrywa więcej niż jednym głosem S2 – preferowany przez i-tego wyborcę kandydat wygrywa dokładnie jednym głosem S3 – preferowany przez i-tego wyborcę kandydat remisuje S4 – preferowany przez i-tego wyborcę kandydat przegrywa dokładnie jednym głosem S5 – preferowany przez i-tego wyborcę kandydat przegrywa więcej niż jednym głosem

5 Gdyby wyborca poszedł do urny… B – dyferencjał partyjny c – koszt oddania głosu S1S2S3S4S5 Głosuje na swojego G B-c B/2-c-c Głosuje na drugiego B-cB/2-c-c Nie głosuje A BBB/200

6 Paradoks EU(G) = p1*B + p2*B + p3*B + p4*B/2 – c EU(V) = p1*B + p2*B + p3*B/2 Aby warto było głosować: EU(G) > EU(V) Co można uprościć do warunku: (p3+p4)/2*B – c > 0 Z uwagi na to, że (p3+p4)/2 jest blisko zera, to c < 0, co się raczej nie zdarza.

7 Próby rozwiązania Modyfikacja modelu Downsa: -Jednostka nie ma pojęcia, który z 5 stanów wystąpi, nie bierze pod uwagę prawdopodobieństwa ich wystąpienia -Stosuje zatem strategię minimaksu strat Savagea: minimalizuje maksymalne poczucie żalu związane z wyborem -Strata – różnica między użytecznością będącą wynikiem podjętego działania, a maksymalną użytecznością możliwą do osiągnięcia

8 Macierz wypłat w tej strategii S1S2S3S4S5 Głosuje na swojego G cc00c Głosuje na drugiego cB/2+cBB/20 Nie głosuje A 00B/2-c 0 Warunek partycypacji: B/2-c B/4 < c

9 Wady załóżmy, że dane działanie przynosi bardzo wysokie wypłaty użyteczności przy wszystkich możliwych sytuacjach, poza jedną, kiedy to przynosi duże straty – rozwiązanie minimaksowe prowadziłoby do jego skreślenia na taki wynik nie wpłynęłaby nawet bardzo niewielka szansa wystąpienia stanu przynoszącego stratę jeżeli uznamy prawdopodobieństwo oddania decydującego głosu za uwzględnienie w modelu decyzji innych wyborców (to czy taki stan ma szansę wystąpić zależy przecież od rozkładu preferencji wyborczych i chęci pójścia do urny) to model minimaksowy okazuje się być na ten czynnik kompletnie niewrażliwy

10 Teoria gier Znaczenie pojedynczego głosu zależne od innych wyborców: -ich liczby -ich aktywności wyborczej -wyrównania preferencji politycznych Problem: duża frekwencja – mój głos ma nikłe znaczenie. Gdy każdy tak pomyśli frekwencja będzie mniejsza, ale jeżeli każdy zda sobie z tego sprawę, to okaże się jednak większa.

11 Rozwiązanie Kilka równowag Nasha przy założeniach: -Koszty głosowania takie same, zawarte w przedziale (0,1/2) -Dyferencjał partyjny = 1 -Poparcie dla obu partii równoliczne Dla każdej wartości kosztów 2 równowagi Nasha: jedna przy frekwencji bliskiej 100%, druga przy bliskiej 0. Duża frekwencja niestabilna z powodu niepewności co do zachowań innych wyborców

12 Korzyści dodatkowe Poza korzyścią z dyferencjału partyjnego, także inne korzyści z głosowania, np.: -Stworzenie możliwości wyłonienia rządu. ALE: do tego wystarczy jeden głos, reszta może zostać w domu – efekt gapowicza. -Poczucie obywatelskiego obowiązku (d), motywacja gdy d>c ALE: decyzja o głosowaniu nie związana z B, a to ciężko pogodzić z teorią racjonalnego wyboru

13 Strategia długoterminowa Jednostki działają racjonalnie, gdy maksymalizują korzyści długookresowe. Stąd: -pójście do wyborów, aby podtrzymać demokratyczne procedury -budować polityczne zaplecze jakiejś partii - oddać głos na małą partię, aby tym większym wskazać preferowany kierunek zmian

14 Inne modyfikacje Podkreślanie ekspresyjnej funkcji wyborów. Wówczas d=d+B, gdzie d to wartości wyrażające poparcie dla kandydata. Czynniki instytucjonalne: modyfikują wypłaty przy różnych stanach wyborczych, modyfikują siłę głosu.


Pobierz ppt "Paradoks partycypacji wyborczej Rafał Miśta Na podstawie tekstu W. Aksztejn Racjonalność wyborcy a paradoks partycypacji. Znaczenie instrumentalnej motywacji."

Podobne prezentacje


Reklamy Google