Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

ZASTOSOWANIA AHP W BUDOWNICTWIE Politechnika Częstochowska Katedra Metod Informatycznych w Budownictwie Wydziału Budownictwa Wydziału Budownictwa d Prof.

Podobne prezentacje


Prezentacja na temat: "ZASTOSOWANIA AHP W BUDOWNICTWIE Politechnika Częstochowska Katedra Metod Informatycznych w Budownictwie Wydziału Budownictwa Wydziału Budownictwa d Prof."— Zapis prezentacji:

1 ZASTOSOWANIA AHP W BUDOWNICTWIE Politechnika Częstochowska Katedra Metod Informatycznych w Budownictwie Wydziału Budownictwa Wydziału Budownictwa d Prof. dr hab. inż. Wacław Przybyło Stanisław Krężołek Dr inż. Stanisław Krężołek

2 Wprowadzenie W połowie lat 70-tych zaczęto w USA wdrażać do codziennej praktyki metodę The Analytic Hierarchy Process, którą można już wszędzie rozpoznać jako AHP (pod tym hasłem należy szukać informacji w internecie). Jest to metoda, która umożliwia podejmowanie złożonych i wielokryterialnych decyzji, bez względu na dziedzinę jej zastosowań. W połowie lat 70-tych zaczęto w USA wdrażać do codziennej praktyki metodę The Analytic Hierarchy Process, którą można już wszędzie rozpoznać jako AHP (pod tym hasłem należy szukać informacji w internecie). Jest to metoda, która umożliwia podejmowanie złożonych i wielokryterialnych decyzji, bez względu na dziedzinę jej zastosowań.

3 PROCEDURA HIERARCHII ANALITYCZNEJ - AHP Każdy problem, który należy rozwiązać przedstawia się w postaci hierarchii (rys.1). Każdy problem, który należy rozwiązać przedstawia się w postaci hierarchii (rys.1). Na szczycie piramidy hierarchicznej jest zawsze jeden element, który opisuje cel ogólny. Postępując z góry do dołu, na każdym poziomie hierarchicznym wzrasta dokładność składowych, a podstawę piramidy tworzą konkretne pojęcia, które są alternatywami rozwiązań. Na poziomach pośrednich znajdują się uczestnicy (siły) wpływający na rozwiązanie, cele uczestników, polityki ich wdrożenia itp. Na szczycie piramidy hierarchicznej jest zawsze jeden element, który opisuje cel ogólny. Postępując z góry do dołu, na każdym poziomie hierarchicznym wzrasta dokładność składowych, a podstawę piramidy tworzą konkretne pojęcia, które są alternatywami rozwiązań. Na poziomach pośrednich znajdują się uczestnicy (siły) wpływający na rozwiązanie, cele uczestników, polityki ich wdrożenia itp. Budowa struktury hierarchicznej problemu jest najbardziej kreatywną częścią AHP, mającą istotny wpływ na rozwiązanie końcowe. Dobrze jest, gdy w strukturze hierarchicznej nie wprowadza się więcej niż 5 do 7 poziomów, a na każdym poziomie nie więcej niż 5 do 7 elementów. Budowa struktury hierarchicznej problemu jest najbardziej kreatywną częścią AHP, mającą istotny wpływ na rozwiązanie końcowe. Dobrze jest, gdy w strukturze hierarchicznej nie wprowadza się więcej niż 5 do 7 poziomów, a na każdym poziomie nie więcej niż 5 do 7 elementów.

4 Cel ogólny zadania decyzyjnego Kryterium 1Kryterium 2Kryterium N Subkryterium 1 Subkryterium 2 Subkryterium N Alternatywa decyzyjna 1 Alternatywa decyzyjna 2 Alternatywa decyzyjna N Rys. 1. Struktura hierarchiczna problemu.

5 Skala ocen W metodzie AHP dotychczas używane skale ocen, np. temperatury, czasu, odległości, pieniędzy są nieprzydatne, ponieważ jej podstawą jest tylko porównywanie parami każdego elementu z każdym. W tym celu wprowadzono nową skalę 9-cio punktową. (Z psychologii [6] wiadomo, że człowiek nie jest w stanie zapamiętać i porównać ze sobą więcej niż 7 2 przedmiotów). W metodzie AHP dotychczas używane skale ocen, np. temperatury, czasu, odległości, pieniędzy są nieprzydatne, ponieważ jej podstawą jest tylko porównywanie parami każdego elementu z każdym. W tym celu wprowadzono nową skalę 9-cio punktową. (Z psychologii [6] wiadomo, że człowiek nie jest w stanie zapamiętać i porównać ze sobą więcej niż 7 2 przedmiotów). Porównując ze sobą dwa elementy zadajemy pytanie: który z dwóch jest ważniejszy, (co wnosi, jest bardziej prawdopodobny), względem czegoś i w jakim stopniu? Odpowiedź na to pytanie podaje następująca skala ocen parami, w której poszczególne liczby oznaczają: Porównując ze sobą dwa elementy zadajemy pytanie: który z dwóch jest ważniejszy, (co wnosi, jest bardziej prawdopodobny), względem czegoś i w jakim stopniu? Odpowiedź na to pytanie podaje następująca skala ocen parami, w której poszczególne liczby oznaczają: 1 - oba elementy są jednakowo ważne, 1 - oba elementy są jednakowo ważne, 3 - jeden element jest nieznacznie ważniejszy od drugiego, 3 - jeden element jest nieznacznie ważniejszy od drugiego, 5 - jeden element jest wyraźnie ważniejszy od drugiego, 5 - jeden element jest wyraźnie ważniejszy od drugiego, 7 - jeden elementy jest dużo ważniejszy od drugiego, 7 - jeden elementy jest dużo ważniejszy od drugiego, 9 - jeden element jest zdecydowanie ważniejszy od drugiego, 9 - jeden element jest zdecydowanie ważniejszy od drugiego, 2, 4, 6 i 8 - przyjmuje się, gdy trudno zdecydować się na oceny nieparzyste. Skala ta jest uniwersalna gdy można ją stosować równocześnie przy porównaniu pojęć ilościowych z jakościowymi. 2, 4, 6 i 8 - przyjmuje się, gdy trudno zdecydować się na oceny nieparzyste. Skala ta jest uniwersalna gdy można ją stosować równocześnie przy porównaniu pojęć ilościowych z jakościowymi.

6 Wyznaczenie priorytetów cząstkowych i globalnych oraz ich ocena Po zbudowaniu struktury hierarchicznej problemu, następnym krokiem jest porównanie parami wszystkich elementów każdego poziomu względem każdego elementu poziomu wyższego. Wycenę każdej pary, dokonanej przez ekspertów, zapisuje się w macierzy (tablicy) o wymiarze N x N, gdzie N oznacza ilość elementów na danym poziomie. Tak zbudowana macierz ma następujące własności. Na przekątnej macierzy wszystkie wyrazy aii = 1. Nad przekątną aij = wycenom określonych przez ekspertów, a poniżej przekątnej odwrotności tych wycen. Każda macierz, zbudowana w określony sposób, zawiera wiele informacji. Po zbudowaniu struktury hierarchicznej problemu, następnym krokiem jest porównanie parami wszystkich elementów każdego poziomu względem każdego elementu poziomu wyższego. Wycenę każdej pary, dokonanej przez ekspertów, zapisuje się w macierzy (tablicy) o wymiarze N x N, gdzie N oznacza ilość elementów na danym poziomie. Tak zbudowana macierz ma następujące własności. Na przekątnej macierzy wszystkie wyrazy aii = 1. Nad przekątną aij = wycenom określonych przez ekspertów, a poniżej przekątnej odwrotności tych wycen. Każda macierz, zbudowana w określony sposób, zawiera wiele informacji.

7 W AHP do wyznaczenia priorytetów (wag) wystarcza tylko maksymalna wartość własna max i związany z nią wektor własny. Nie trzeba znać rachunku macierzowego by te dwie wartości obliczyć na komputerze przy użyciu standardowego programu. Wartość własna jest potrzebna do oceny popełnianych błędów, a wektor własny jest wektorem priorytetów (wag). Dla każdej macierzy popełniane błędy oznacza się wzorem: W AHP do wyznaczenia priorytetów (wag) wystarcza tylko maksymalna wartość własna max i związany z nią wektor własny. Nie trzeba znać rachunku macierzowego by te dwie wartości obliczyć na komputerze przy użyciu standardowego programu. Wartość własna jest potrzebna do oceny popełnianych błędów, a wektor własny jest wektorem priorytetów (wag). Dla każdej macierzy popełniane błędy oznacza się wzorem: Wskaźnik zgodności – C.I. Wskaźnik zgodności – C.I. C.I. = ( max – N)/(N – 1) < 0,1 C.I. = ( max – N)/(N – 1) < 0,1 Stosunek zgodności – CR Stosunek zgodności – CR C. R. = C.I. / R.I. < 0,1 C. R. = C.I. / R.I. < 0,1 gdzie: N jest wymiarem macierzy, a R.I. wartością z tablic dla odpowiedniego N. gdzie: N jest wymiarem macierzy, a R.I. wartością z tablic dla odpowiedniego N.

8 PRZYKŁADY ZASTOSOWAŃ AHP Budownictwo jest dziedziną, w której AHP zaczyna się dopiero wprowadzać. Przytoczone trzy przykłady (na więcej nie ma miejsca), pomogą spojrzeć na problemy budownictwa w ujęciu systemowym. W dotychczasowej praktyce panowało podejście dedukcyjne, w którym kładziono nacisk na segment problemu, ignorując powiązania zachodzące pomiędzy składowymi problemu. AHP łączy podejście dedukcyjne i systemowe, tworząc z nich zintegrowany i logiczny kompleks. Budownictwo jest dziedziną, w której AHP zaczyna się dopiero wprowadzać. Przytoczone trzy przykłady (na więcej nie ma miejsca), pomogą spojrzeć na problemy budownictwa w ujęciu systemowym. W dotychczasowej praktyce panowało podejście dedukcyjne, w którym kładziono nacisk na segment problemu, ignorując powiązania zachodzące pomiędzy składowymi problemu. AHP łączy podejście dedukcyjne i systemowe, tworząc z nich zintegrowany i logiczny kompleks.

9 Wybór technologii Załóżmy, że na terenie zabudowanym istniejący kolektor jest już przestarzały, częściowo zniszczony i o niewystarczającej przepustowości. Należy więc wykonać nowy. W celu uproszczenia przeprowadzanej analizy przyjęto tylko dwa sposoby (technologii) budowy nowego kolektora. Struktura tego zadania przedstawiona jest na rysunku 2. Wszystkie składowe tej struktury mają wpływ na podjęcie decyzji. Jest to propozycja autorów, ale specjaliści mogą tę strukturę poprawić lub zbudować nową. Ze względu na brak miejsca nie podaje się definicji każdej składowej. Załóżmy, że na terenie zabudowanym istniejący kolektor jest już przestarzały, częściowo zniszczony i o niewystarczającej przepustowości. Należy więc wykonać nowy. W celu uproszczenia przeprowadzanej analizy przyjęto tylko dwa sposoby (technologii) budowy nowego kolektora. Struktura tego zadania przedstawiona jest na rysunku 2. Wszystkie składowe tej struktury mają wpływ na podjęcie decyzji. Jest to propozycja autorów, ale specjaliści mogą tę strukturę poprawić lub zbudować nową. Ze względu na brak miejsca nie podaje się definicji każdej składowej.

10 Po zbudowaniu struktury hierarchicznej zadania można przystąpić do dalszych czynności czyli do szczegółowych wycen. Na poziomie 1 - Cel zadania jest jeden element a jego priorytet wynosi w0 = 1. Na poziomie 2 - Kryteria są cztery elementy, więc macierz wycen będzie miała wymiar 4 x 4, ale tylko jedna ponieważ na wyższym poziomie jest tylko jeden element. Na poziomie 3 - Subkryteria są cztery elementy, będzie więc macierz o wymiarze 4 x 4, ale będzie ich cztery ponieważ piętro wyżej są też cztery elementy.

11 Rys. 2. Struktura hierarchiczna wyboru technologii Wybór technologii wykonania Kolektora w terenie zabudowanym Z Poziom zanieczyszczenia środowiska R Utrzymanie pozycji na rynku konkurencji C Czas wykonania K Koszt K ZU Możliwość zniszczenia sprzę tu U KJ Stopień wadliwego wykonania UJ Możliwość uszkodzenia istniejącej infrastruktury NP Wielkość i nwestycji po czątkowych P MT Przepust (minitunel) W Wykop odkryty 0.450

12 M1 Które z kryteriów jest ważniejsze ze względu na Cel KCRZPriorytet KosztK12440,4963 Czas wykonanieC1210,2168 Pozycja na rynkuR120,1555 Poziom zanieczyszczenia środowiskaZ10,1314 max = CI = 0.062CR = 0.069

13 Sposób wykonania ocen tej macierzy jak i w wszystkich innych jest następujący: - na przekątnej aii = 1, - powyżej przekątnej dla i < j, aij = wycenie ekspertów, - - poniżej przekątnej są odwrotności aij tzn. aji = 1 / aij. (We wszystkich macierzach tych wartości nie podaje się) - - max nie podaje się obliczeń, ponieważ korzystając ze standardowego programu wyznacza się ją razem z jej wektorem własnym (który jest wektorem priorytetów). Np. w wierszu 2 i kolumnie 3 tj. a23 = 2, co oznacza że czas wykonania jest nieznacznie ważniejszy od pozycji na rynku konkurencji (wg skali ocen).

14 M2 Które z subkryteriów jest ważniejsze ze względu na Koszt NPUJKJZUPriorytet Wielkość inwestycji początkowychNP Możliwość uszkodzenia istniejącej infrastruktury UJ Stopień wadliwego wykonaniaKJ Możliwość zniszczenia sprzętuZU max = CI = 0.02 CR = 0.022

15 M3 Które z subkryteriów jest ważniejsze ze względu na Czas wykonania NPUJKJZUPriorytet Wielkość inwestycji początkowychNPNP Możliwość uszkodzenia istniejącej infrastruktury UJ Stopień wadliwego wykonaniaKJKJ Możliwość zniszczenia sprzętuZUZU max = CI = CR = 0.02

16 M4 Które z subkryteriów jest ważniejsze ze względu na Utrzymanie pozycji na rynku konkurencji NPUJKJZUPriorytet Wielkość inwestycji początkowychNP Możliwość uszkodzenia istniejącej infrastruktury UJ Stopień wadliwego wykonaniaKJ Możliwość zniszczenia sprzętuZU max = CI = > 0.1 czyli wycenę należy powtórzyć, ponieważ błąd jest zbyt duży.

17 M5 Które z subkryteriów jest ważniejsze ze względu na Poziom zniszczenia środowiska NPUJKJZUPriorytet Wielkość inwestycji początkowychNP Możliwość uszkodzenia istniejącej infrastruktury UJ Stopień wadliwego wykonaniaKJ Możliwość zniszczenia sprzętuZU max = CI = 0.04CR = 0.05

18 Kryteria i ich priorytety Subkryteria i ich priorytety KPRZPrioryte ty subkryt eriów Wielkość inwestycji początkowychNP Możliwość uszkodzenia istniejącej infrastruktury UJ Stopień wadliwego wykonaniaKJ Możliwość zniszczenia sprzętuZU Tablica 1. Poziom 3 - Priorytety cząstkowe subkryterium

19 M6 Która technologia jest korzystniejsza ze względu na Wielkość inwestycji początkowych MTWPriorytet Minitunel Wykop odkryty M7 Która technologia jest korzystniejsza ze względu na Możliwość uszkodzenia istniejącej infrastruktury MTWPriorytet Minitunel1¼0.200 Wykop odkryty10.800

20 M8 Która technologia jest korzystniejsza ze względu na Możliwość wadliwego wykonania MTWPriorytet Minitunel Wykop odkryty M9 Która technologia jest korzystniejsza ze względu na Możliwość zniszczenia sprzętu MTWPriorytet Minitunel Wykop odkryty10.500

21 Subkryteria i ich Priorytety Technologie i ich Priorytety NP.UJKJZUPriorytety technologii MT Minitunel W Wykop odkryty Tablica 2. Poziom IV - Priorytety globalne wariantów technologicznych W tablicy 2 jak w soczewce są wszystkie dane do analizy. Minitunel jest nieznacznie korzystniejszy od wykopu odkrytego a odpowiedź na pytanie dlaczego znajduje się we wszystkich kolumnach tej tablicy.

22 Wybór przewoźnika Cały problem wyboru przewoźnika przedstawiony jest na rys. 3 i w związanych z nim macierzach i tabelach. Budowę macierzy i tabel opisano w przykładzie 3.1. Cały problem wyboru przewoźnika przedstawiony jest na rys. 3 i w związanych z nim macierzach i tabelach. Budowę macierzy i tabel opisano w przykładzie 3.1.

23 Rys. 3. Struktura hierarchiczna wyboru przewoźnika

24 M1 Które z kryteriów jest ważniejsze ze względu na Cel C1C1 C2C2 C3C3 C4C4 C5C5 Priorytet KosztC1C1 11/ Obsługa klientaC2C Załatwianie reklamacjiC3C3 131/ Dostępność sprzętu Elastyczność przewozów C4C4 11/ Stabilność finansowaC5C max = 5.21CI = 0.05CR = 0.05

25 M2 Który przewoźnik jest korzystniejszy ze względu na Koszt C 1 ABCPriorytet Przewoźnik A Przewoźnik B1½0.094 Przewoźnik C max = 3.01CI = 0.007CR = 0.01 M3 Który przewoźnik jest korzystniejszy ze względu na Obsługę klienta C 2 ABCPriorytet Przewoźnik A11/51/ Przewoźnik B Przewoźnik C max = 3.03CI = 0.002CR = 0.03

26 M4 Który przewoźnik jest korzystniejszy ze względu na Załatwianie reklamacji C 3 ABCPriorytet Przewoźnik A11/ Przewoźnik B Przewoźnik C max = 3.00CI = CR = 0 M5 Który przewoźnik jest korzystniejszy ze względu na Dostępność sprzętu C 4 ABCPriorytet Przewoźnik A Przewoźnik B Przewoźnik C max = 3.02CI = 0.01CR = 0.02

27 M6 Który przewoźnik jest korzystniejszy ze względu na Finansową stabilność C 5 ABCPriorytet Przewoźnik A11/51/ Przewoźnik B Przewoźnik C max = 3.1CI = 0.06CR = 0.1 C1C1 C2C2 C3C3 C4C4 C5C Priorytet Przewoźnik A Przewoźnik B Przewoźnik C Tablica 3. Poziom III – priorytet globalny przewoźników

28 Optymalny wybór domu (przy zakupie). Przy zakupie domu przyjęto minimalną ilość kryteriów i subkryteriów. Ten zbiór można poszerzyć wielokrotnie budując inaczej strukturę hierarchiczną problemu. W poprzednich przykładach obie hierarchie były pełne, to znaczy wszystkie elementy każdego poziomu miały związek ze wszystkimi elementami poziomu wyższego. W przypadku wyboru domu hierarcha jest niepełna ponieważ nie wszystkie elementy z trzeciego poziomu są powiązane z wszystkimi elementami drugiego poziomu. Ma to swoje odbicie w procesie obliczeniowym. Będzie to widoczne w zestawionych tabelach.

29 We wszystkich trzech przykładach wszystkie obliczenia wykonano na piechotę, ale wektory priorytetów dla kryteriów podano w zaznaczonych na grubo kolumnach a macierze związane z każdym poziomem składające się z priorytetów cząstkowych zaznaczono też na grubo w tablicach. Gdyby ktoś chciał wykorzystać do obliczeń rachunek macierzowy to wtedy wynik można zapisać WT = Wi.... W3 x W2 gdzie Wi jest macierzą i-tego poziomu której kolumny stanowią priorytety cząstkowe.

30 Optymalny wybór domu C Cena O Otoczenie P Powierzchnia PU Pow. użytkowa PD Pow. działki K Wygoda Komuni- kacyjna S Spokój cisza P Instytucje publiczne C Cena A BC Rys. 4. Struktura hierarchiczna wyboru domu.

31 M1 Które z kryteriów jest ważniejsze ze względu na cel. CPOPriorytet CenaC1230,540 PowierzchniaP120,297 OtoczenieO10,163 M2 Które subkryterium jest ważniejsze ze względu na powierzchnię. PUPU PDPD Priorytet Powierzchnia użytkowaPUPU 130,750 Powierzchnia działkiPDPD 10,250

32 M3 Które subkryterium jest ważniejsze ze względu na otoczenie. KSPPriorytet Wygoda komunikacyjna1620,629 Spokój, cisza130,219 Instytucje publiczne10,151

33 C1C1 C2C2 C3C3 0,5400,2970,163Priorytet Cena1,0--0,540 Powierzchnia użytkowa-0,750-0,223 Powierzchnia działki-0,250-0,073 Wygoda komunikacyjna--0,6290,102 Spokój, cisza--0,2190,036 Instytucje publiczne--0,1510,026 Tablica 4. Poziom III - Priorytety subkryteriów

34 CPUPU PDPD KSP 0,54 0 0,22 3 0,0730,1020,0360,026Prioryte ty A0,50,30,20,30,10,20,391 B0,20,30,40,30,20,50,255 C0,30,4 0,70,30,354 Tablica 5. Poziom IV Priorytety globalne. W tab. 5 podano w każdej kolumnie priorytety cząstkowe domów względem subkryteriów, wynikające z macierzy, których się nie przytacza.

35 Wnioski Przedstawiona metoda AHP istnieje już ponad 30 lat i opanowała całkowicie kraje wysoko rozwinięte. Należy się tylko dziwić, dlaczego u nas nie jest powszechnie stosowana. Na przedstawionych przykładach widać wyraźnie, że można ją stosować wszędzie tam, gdzie tylko potrzebny jest wybór (szczególnie w sytuacjach konfliktowych). Można do nich zaliczyć: Przedstawiona metoda AHP istnieje już ponad 30 lat i opanowała całkowicie kraje wysoko rozwinięte. Należy się tylko dziwić, dlaczego u nas nie jest powszechnie stosowana. Na przedstawionych przykładach widać wyraźnie, że można ją stosować wszędzie tam, gdzie tylko potrzebny jest wybór (szczególnie w sytuacjach konfliktowych). Można do nich zaliczyć: wybór materiałów do budowy mostów, nawierzchni itp., wybór materiałów do budowy mostów, nawierzchni itp., wybór kolejności realizacji projektów, wybór kolejności realizacji projektów, dobór sprzętu i kadr, dobór sprzętu i kadr, wybór polityk remontowych, wybór polityk remontowych, wybór strategii rozwoju przedsiębiorstw i branż, wybór strategii rozwoju przedsiębiorstw i branż, wybór dostawców i przewoźników, wybór dostawców i przewoźników, rozstrzyganie ofert, itp. rozstrzyganie ofert, itp.

36 Są to problemy codziennego dnia. Nowe i ważne zadania związane są z postępem, nowym spojrzeniem na działalność techniczną i organizacyjną wymagające nowego podejścia, które powinny uwzględniać jakość wyrobów i usług, ocenę ich cyklu życiowego, scenariusze rozwoju i różne horyzonty czasowe. Autorów szczególnie interesuje life - cycle wielkiej płyty, intensywny rozwój budownictwa i związana z nim prefabrykacja. Są to problemy codziennego dnia. Nowe i ważne zadania związane są z postępem, nowym spojrzeniem na działalność techniczną i organizacyjną wymagające nowego podejścia, które powinny uwzględniać jakość wyrobów i usług, ocenę ich cyklu życiowego, scenariusze rozwoju i różne horyzonty czasowe. Autorów szczególnie interesuje life - cycle wielkiej płyty, intensywny rozwój budownictwa i związana z nim prefabrykacja.

37 Metoda AHP ma wiele zalet, do których można zaliczyć: uniwersalność polegającą na możliwości uwzględnienia dużej liczby czynników różnej natury: ekonomicznych, społecznych, środowiskowych, technicznych, organizacyj-nych, politycznych i innych, uniwersalność polegającą na możliwości uwzględnienia dużej liczby czynników różnej natury: ekonomicznych, społecznych, środowiskowych, technicznych, organizacyj-nych, politycznych i innych, stwarza ramy do podziału dużych i skomplikowanych problemów decyzyjnych na mniejsze, bardziej zrozumiałe sterowalne decyzje, stwarza ramy do podziału dużych i skomplikowanych problemów decyzyjnych na mniejsze, bardziej zrozumiałe sterowalne decyzje, bezpośrednią i efektywną drogę włączenia danych i opinii ekspertów, bezpośrednią i efektywną drogę włączenia danych i opinii ekspertów, szybkość i prostotę z jaką można przedstawić strukturę problemu i przeprowadzić jego analizę, co pozwala na głębsze zrozumienie problemu, poprzez rozwiązywanie go krok po kroku, szybkość i prostotę z jaką można przedstawić strukturę problemu i przeprowadzić jego analizę, co pozwala na głębsze zrozumienie problemu, poprzez rozwiązywanie go krok po kroku, elastyczność przy jej rewizji i przydatność jej założeń do przeprowadzenia dyskusji i do ustalenia obszarów zgodności uczestników i spraw spornych, gdy pojawia się konflikt, elastyczność przy jej rewizji i przydatność jej założeń do przeprowadzenia dyskusji i do ustalenia obszarów zgodności uczestników i spraw spornych, gdy pojawia się konflikt, łatwość z jaką metoda może być wdrożona, bez ponoszenia dużych nakładów, a co najważniejsze w krótkim czasie, wykorzystując przy tym opracowane już materiały i inne źródła. łatwość z jaką metoda może być wdrożona, bez ponoszenia dużych nakładów, a co najważniejsze w krótkim czasie, wykorzystując przy tym opracowane już materiały i inne źródła.

38 Literatura [1]Saaty T. L, The Analytical Hierarchy Process, RWS Publications, Pittsburgh,PA,1990 [1]Saaty T. L, The Analytical Hierarchy Process, RWS Publications, Pittsburgh,PA,1990 [2] Saaty T.L., ( ed.) Decision Making For Leaders, RWS Publication, Pittsburgh. [2] Saaty T.L., ( ed.) Decision Making For Leaders, RWS Publication, Pittsburgh. [3] Saaty T.L., (1994), Fundamentals of Decision Making and Priority Teory, RWS Publication, Pittsburgh. [3] Saaty T.L., (1994), Fundamentals of Decision Making and Priority Teory, RWS Publication, Pittsburgh. [4] Saaty T.L., Vargas L. Models, Methods, Concepts and Applications of the Analytic Hierarchy Process, Boston, Kluwer Academic Publishing [4] Saaty T.L., Vargas L. Models, Methods, Concepts and Applications of the Analytic Hierarchy Process, Boston, Kluwer Academic Publishing [5] Karhonen P., Wallenius J., The Analytic Hierachy Process in Natural Resource and Enviromental Decision Making, Boston, Kluwer Academic Publishing [5] Karhonen P., Wallenius J., The Analytic Hierachy Process in Natural Resource and Enviromental Decision Making, Boston, Kluwer Academic Publishing [6] Miller G. A., The Magical Number Seven Plus or Minus Two: Some Limits on our Capacity for Processing Information, Psychological Rev. 1956, Vol. 63, pp [6] Miller G. A., The Magical Number Seven Plus or Minus Two: Some Limits on our Capacity for Processing Information, Psychological Rev. 1956, Vol. 63, pp

39 APPLICATIONS OF THE ANALYTICAL HIERARCHY PROCESS IN CIVIL ENGINEERING APPLICATIONS OF THE ANALYTICAL HIERARCHY PROCESS IN CIVIL ENGINEERING SUMMARY: In the paper the analytical hierarchy process (AHP) has been shown. Applications of AHP to choice of technology of management of construction, choice of carrier as well as choice of house for buying have been presented. SUMMARY: In the paper the analytical hierarchy process (AHP) has been shown. Applications of AHP to choice of technology of management of construction, choice of carrier as well as choice of house for buying have been presented.


Pobierz ppt "ZASTOSOWANIA AHP W BUDOWNICTWIE Politechnika Częstochowska Katedra Metod Informatycznych w Budownictwie Wydziału Budownictwa Wydziału Budownictwa d Prof."

Podobne prezentacje


Reklamy Google