Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Statystyka stanowi nie tylko podstawę funkcjonowania opieki zdrowotnej w każdym rozwiniętym państwie. Znajomość jej podstawowych prawideł i zasad jest.

Podobne prezentacje


Prezentacja na temat: "Statystyka stanowi nie tylko podstawę funkcjonowania opieki zdrowotnej w każdym rozwiniętym państwie. Znajomość jej podstawowych prawideł i zasad jest."— Zapis prezentacji:

1 Statystyka stanowi nie tylko podstawę funkcjonowania opieki zdrowotnej w każdym rozwiniętym państwie. Znajomość jej podstawowych prawideł i zasad jest również niezbędna w pracy każdej osoby związanej z tematyką zdrowia publicznego, niezależnie od rodzaju wykonywanej specjalizacji. Ma ona również bardzo duże znaczenie w ekonomicznej ocenie funkcjonowania placówek opieki zdrowotnej. 1

2 W XXI wieku możemy bardzo dokładnie przeanalizować dane statystyczne niemal z każdej dziedzinie życia. W medycynie odgrywają one bardzo ważną rolę. Statystyka pomaga decydować o otwieraniu nowych oddziałów szpitalnych tam, gdzie wskazują na to między innymi wyniki jej badań. Malejący przyrost naturalny sprawia, że oddziały położnictwa i patologii ciąży nie są w pełni wykorzystane w istniejących już placówkach. Z danych statystycznych wynika, że zarówno obecnie jak i w najbliższym czasie potrzebne będą łóżka na oddziałach np: onkologicznych, kardiologicznych, ratownictwa medycznego i geriatrii. 2

3 3 Celem uzyskiwania danych statystycznych w ochronie zdrowia jest dostarczanie informacji dla podejmowania decyzji, a więc wyboru najlepszych kierunków działania w celu zaspokojenia potrzeb zdrowotnych społeczeństwa. Aby podjąć racjonalne działania zdrowotne, koniecznym etapem wstępnym jest analiza sytuacji, która powinna obejmować rozpoznanie stanu zdrowia ludności, zasobów ludzkich i materialnych bieżącej działalności służby zdrowia, a w tym – natężenia działań zdrowotnych, intensywności pracy personelu służby zdrowia jakości udzielanych świadczeń. Informacje te otrzymujemy ze sprawozdawczości medycznej. Po analizie sytuacji opracowuje się zbiór wszystkich alternatywnych sposobów działania dla osiągnięcia wyznaczonego celu. Doceniając w pełni rolę i znaczenie metod statystycznych w badaniach naukowych, nie można zapominać, że statystyka nie spełnia w nich roli nadrzędnej, ale jest jednym z cennych narzędzi.

4 Zalety statystyki Tworzenie zwartej i treściwej reprezentacji danych: dysponujemy nowoczesną aparaturą, która w krótkim czasie dostarcza znacznej ilości wyników wyniki te należy przekształcić w użyteczną informację człowiek może brać pod uwagę jedynie ograniczoną liczbę faktów statystyka pomaga zrozumieć dane, wydobyć z nich użyteczną informację i przekształcić ją w wiedzę 4

5 Zalety statystyki Wnioskowanie w oparciu o niepewne dane: dane eksperymentalne są niepewne z powodu błędów pomiarowych, niejednorodności badanego obiektu, niedoskonałości modeli stosowanych do interpretacji eksperymentatora interesują wnioski pewne statystyka pozwala wyeliminować lub ograniczyć niektóre czynniki zmienności wynik podawany jest wraz z oszacowaniem niepewności 5

6 Zalety statystyki Przekształcanie danych do postaci użytecznej w rozwiązywaniu postawionego zadania: informacja zawarta jest w danych w postaci uwikłanej surowe dane należy przekształcić do formy przydatnej w rozwiązywanym problemie stosujemy modele dobrze zdefiniowane i często łatwo dostępne w systemach analizy danych zastosowanie adekwatnego modelu pozwala uzyskać odpowiedź na postawione pytanie 6

7 Niebezpieczeństwa stosowania statystyki Nieumiejętne stosowanie statystyki polega na: użyciu niewłaściwych pojęć i modeli, które nie są uzasadnione teoretycznie i źle reprezentują dane ograniczaniu warstwy informacyjnej poprzez zastosowanie zbyt daleko idących uproszczeń uruchamianiu procedur komputerowych bez istotnej wiedzy o ich działaniu niewłaściwej prezentacji danych celowym ukrywaniu faktów np. dużego rozrzutu danych eksperymentalnych poprzez podanie jedynie wartości średniej 7

8 8 Powinien być określony w sposób zwięzły i precyzyjny, np. ustalenie wpływu określonego leku na skuteczność leczenia określonej choroby. Przy planowaniu analizy statystycznej należy sformułować hipotezę badawczą, np. lek zwiększa skuteczność leczenia.

9 9 FUKCJE STATYSTYKI: informacyjna (dająca pełny i obiektywny obraz badanych zjawisk), analityczna (dzięki której możliwe jest określenie czynników kształtujących konkretne procesy i zjawiska) prognostyczna (pozwalająca na przewidywanie kierunku rozwoju analizowanych zjawisk).

10 10 Mianem zbiorowości (populacji) statystycznej określa się zbiory dowolnych elementów (osób, przedmiotów, faktów) podobnych do siebie pod względem określonych właściwości. Kompletny zbiór elementów nosi nazwę zbiorowości (populacji) generalnej. Indywidualne składowe zbiorowości nazywamy jednostkami statystycznymi lub jednostkami badania. Zbiorowości można wyodrębniać według różnych kryteriów. I tak, z względu na kryterium czasu wyróżnia się zbiorowości statyczne (np. zbiorowość ludności Polski wg stanu na dzień r.). Zbiorowości statyczne tworzą więc jednostki, które istniały, istnieją lub będą istniały w ściśle określonym momencie. Zbiorowości dynamiczne składają się z jednostek obserwowanych w pewnym przedziale czasu (szereg czasowy).

11 Populacja (zbiorowość generalna) Parametr Statystyka Próba (zbiorowość próbna) (selekcja) (obliczenie) (szacowanie) (opis) 11

12 populacja próba Statystyka, jako wartość liczona z próby, zmienia się za każdym razem, gdy wybieramy inną próbę. 12

13 13 Jednostki statystyczne będące elementami składowymi zbiorowości charakteryzują się określonymi właściwościami, które nazywamy cechami statystycznymi. Najogólniej rzecz ujmując, cechy statystyczne można podzielić na stałe i zmienne. Cechy stałe (rzeczowe, przestrzenne i czasowe) są wspólne dla wszystkich jednostek zbiorowości. Taką zbiorowość nazywamy wówczas jednorodną. Cechy stałe nie podlegają badaniu statystycznemu a jedynie umożliwiają zaliczanie jednostek do określonych zbiorowości. Właściwości, które różnicują jednostki statystyczne między sobą, nazywa cechami zmiennymi. Przedmiotem badania statystycznego są zbiorowości składające się z jednostek posiadających jedną lub kilka cech wspólnych (stałych) oraz jedną lub wiele cech (zmiennych) je różnicujących.

14 14 Cechy, których warianty podawane są w sposób opisowy, nazywamy cechami niemierzalnymi (jakościowymi). Cechy, których warianty są wyrażane za pomocą liczb, określa się mianem cech mierzalnych (ilościowych). Wśród cech ilościowych wyróżnia się cechy skokowe i ciągłe. Pierwsze z nich przyjmują warianty zmieniające się skokowo (bez wartości pośrednich), w postaci liczb całkowitych (np. liczba studentów w poszczególnych grupach ćwiczeniowych). Cechy ilościowe ciągłe mogą przyjmować każdą wartość z różną dokładnością (np. wiek, wzrost, BMI).

15 15 Dane w postaci szeregów czasowych - są to wartości danej zmiennej w różnych momentach (okresach) czasu, np. obecność studentów na kolejnych wykładach z Biostatystyki. Dane w ujęciu przekrojowym - odnoszą się do tego samego momentu i wyrażają różne wartości danej zmiennej charakteryzujące różne elementy/ grupy danej populacji. Przykładem danych przekrojowych są dane Spisu Powszechnego.

16 Źródła danych pierwotnewtórne każda publikacja, która zawiera oryginalny opis badań, obserwacji, spostrzeżeń, teorii, hipotez własnych autora. każda publikacja, która nie stanowi opisu oryginalnych badań, obserwacji, spostrzeżeń, teorii lub hipotez własnych autora, lecz gromadzi i prezentuje dane pochodzące od innych autorów.

17 Antynoble, czyli jak skaczą pchły Zdobyć je równie trudno jak słynnego Nobla. Wręczane są za pomysły, które - choć pracują nad nimi poważni naukowcy - wzbudzają śmiech. Oto niektórzy zdobywcy nagrody Antynobla 2010 : Nagroda pokojowa - Richard Stephens, John Atkins, Andrew Kingston (Uniwersytet Keele, Wielka Brytania) - potwierdzili powszechnie panujące przekonanie, że przeklinanie przynosi ulgę w bólu. Medycyna - Simon Rietveld (Uniwersytet Amsterdamski), Ilja van Beest (Uniwersytet w Tylburgu) - odkrycie, że symptomy astmy można leczyć jazdą na roller-coasterze. Zarządzanie - Alessandro Pluchino, Andrea Rapisarda, Cesare Garofalo (Universytet w Catanii, Włochy) - matematycznie wykazali, że firmy byłyby bardziej efektywne, gdyby awanse na wyższe stanowiska przyznawano pracownikom losowo. Zdrowie publiczne także doczekało się niekonwencjonalnych rozwiązań Elena N. Bodnar, Raphael C. Lee i Sandra Marijan z Chicago wynaleźli biustonosz, z którego w nagłej potrzebie da się zrobić dwie maski ochronne (dla właścicielki i kogoś jeszcze). Wyróżnienie odebrała Bodnar, która urodziła się na Ukrainie w okresie awarii w Czarnobylu, której towarzyszył ostry deficyt masek i przewlekłe trudności z zaopatrzeniem w bieliznę. 17


Pobierz ppt "Statystyka stanowi nie tylko podstawę funkcjonowania opieki zdrowotnej w każdym rozwiniętym państwie. Znajomość jej podstawowych prawideł i zasad jest."

Podobne prezentacje


Reklamy Google