Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Prezentacja danych liczbowych Wykład 2 dr Małgorzata Radziukiewicz.

Podobne prezentacje


Prezentacja na temat: "Prezentacja danych liczbowych Wykład 2 dr Małgorzata Radziukiewicz."— Zapis prezentacji:

1 Prezentacja danych liczbowych Wykład 2 dr Małgorzata Radziukiewicz

2 Prezentacja danych liczbowych Materiał liczbowy zebrany w trakcie badania statystycznego może być przedstawiony na trzy sposoby: 1. tabelarycznie 2. graficznie 3. parametrycznie

3 Podstawowym narzędziem opisu badanej populacji jest tzw. szereg statystyczny (szereg liczbowy, szereg empiryczny) Szczególną rolę wśród szeregów statystycznych odgrywa szereg rozdzielczy - Szereg rozdzielczy rozdziela całą populację na grupy według wariantów badanej cechy - Zazwyczaj szeregi rozdzielcze przedstawiamy w formie tablic

4 Zestawienie danych w tablicę statystyczną Tablica statystyczna składa się z 2-óch kolumn - 1-a kolumna – podajemy warianty badanej cechy w formie uporządkowanej, tzn. od najmniejszej do największej lub odwrotnie - 2-ga kolumna – podajemy liczbę jednostek posiadających dany wariant cechy Tablica 1. Schemat tablicy wynikowej Poziomy cechy - xLiczba jednostek x1x1 n1n1 … … xkxk nknk Razem n

5 Przykład 1. populacja – ludność Polski w 2000 roku wg. stanu na r. (38646 tys.) badana cecha – płeć warianty cechy – mężczyźni, kobiety PłećW tysiącach osób Mężczyzna18777 Kobieta19869

6 Niekiedy zamiast liczebności przyporządkowanych poszczególnym wariantom cechy posługujemy się częstościami Częstości to udziały liczebności poszczególnych grup w ogólnej liczebności całej populacji T ablica 2. Schemat tablicy wynikowej Poziomy cechy x i Liczebności n i Częstości (odsetek ogółu) w i x1x1 n1n1 w1w1 …xk…xk …nk…nk …wk…wk Razemn1,00 lub 100%

7 Przykład 2. populacja – ludność Polski w 2000 roku wg. stanu na r. (38646 tys.) badana cecha – miejsce zamieszkania warianty cechy – miasto (M), wieś (W ) Miejsce zamieszkania Liczebności (w tys. osób) Częstości Miasto238970,618 lub 61,8% Wieś147490,382 lub 38,2% Razem386461,000 lub 100%

8 Dwa podstawowe kanony szeregowania zbioru musi być ono rozłączne, tzn. poszczególne warianty cechy (grupy) nie mogą wzajemnie zachodzić na siebie (w przykładzie 1 osoba może być albo kobietą albo mężczyzną, w przykładzie 2 jedna i ta sama osoba może być mieszkańcem miasta albo wsi) musi być ono zupełne, tzn. warianty cechy muszą wyczerpać wszystkie jednostki wchodzące w skład populacji. ( z ogólnej liczebności tys. mieszkańców Polski przyporządkowano je w całości poszczególnym odmianom cechy)

9 Przykład 3 populacja –studenci statystyki WSMiZ w Sochaczewie badana cecha – waga (w kg) ilość wariantów cechy bardzo duża - 68,63,67,65,69,72,62,64,66,68,66,62,60,70,71,63,67, 63,66,65,69,67,72,68,74,65,66,61,64,61,62,64,65,65, 71,64. Komentarz: Przyglądając się powyższym liczbom bardzo trudno określić jakieś wzory czy relacje między studentami.

10 Aby odkryć pewne relacje należy uporządkować liczby w następującej kolejności: 60,61,61,62,62,62,63,63,63,64,64,64,64,65,65,65,65,65,6 6,66,66,66,67,67,68,68,68,68,69,69,70,71,71,72,72,74. Wartości te porządkujemy tak, aby x min = x 1 < x 2 < … < x k = x max, gdzie x min oraz x max oznaczają kolejno najmniejszą i największą wartość cechy zaobserwowanej w badanej zbiorowości. Komentarz : Najmniejsza waga studenta to 60 kg, największa to 74 kg.

11 Różnica między maksymalną a minimalną wagą wynosi 14 kg. Różnica powyższa jest znana w statystyce jako rozstęp. Rozstęp = największa wartość cechy - najmniejsza wartość cechy Komentarz : Studentów z najniższą wagą - 60 i 61 kg - jest niewielu, również niewielu jest studentów z wagą powyżej 70 kg. Najwięcej studentów ma wagę od 62 do 68 kg. Pytanie? Jak często dana miara występuje? Ilu studentów ma tę samą wagę?

12 Liczebność = liczba wystąpień pomiaru Pokażemy liczbę występowania każdej z wag w tablicy 1. Tablica 1. wagaliczebnośćwagaliczebność

13 Wadą tablicy 1 jest to, iż liczba poszczególnych miar wagowych jest duża, zaś częstość ich wystąpień niewielka. Np. waga równa 73 kg w ogóle nie występuje. W tej sytuacji lepiej połączyć dane dotyczące wagi studentów w grupy lub klasy. Np. możemy pogrupować je w następujące klasy: 60-62, 63-65, 66-68, 69-71, Powyższe liczby pokazują początek (x 0i ) i koniec każdej klasy (x 1i ) i znane są jako przedziały klasowe ( x 0i - x 1i ) dla i=1,2,…k gdzie k – liczba klas

14 Przedziały klasowe są najmniejszymi i największymi wartościami danych dla klasy Obecnie możemy skonstruować tablicę 2, która powie nam ile zdarzeń jest w każdej klasie Tablica 2. Klasa i Przedziały klasowe x 0i – x 1i Liczebność n i 160 – – – –

15 Tablica 2 pokazuje nam jak miary wagowe są rozłożone i jaką mają rozpiętość. Tablicę 2 nazywamy tablicą rozkładu liczebności lub prościej rozkładem liczebności. Uwaga!!! Rozkład liczebności (częstości absolutnych) możemy skonstruować dla każdego zbioru danych wcześniej porządkowanego rosnąco lub malejąco.

16 Przy konstrukcji tablicy rozkładu liczebności należy uwzględnić: rozkład liczebności powinien zawierać minimum 5 klas i nie przekraczać 20. Dane o niewielkiej liczebności powinny zawierać od 5 do 10 klas. Dla dużych zbiorów danych przyjmuje się liczbę klas nie większą niż 20. każda miara może trafić tylko do jednej klasy. największa wartość w klasie powinna być o 1 mniejsza od najmniejszej wartości w następnej klasie. Jeśli w danej klasie nie występują żadne wartości (zerowa liczebność), wtedy klasa ma zerową częstość. poszczególne klasy powinny mieć tę samą rozpiętość. Rozpiętość przedziału klasowego możemy obliczyć następująco: rozpiętość klasy = (max – min) / liczba klas

17 Przy konstrukcji tablicy rozkładu liczebności należy uwzględnić: jeżeli z obliczeń nie otrzymamy liczby całkowitej, zwykle zaokrąglamy do kolejnej liczby całkowitej (w naszym przypadku (74-60) / 5 = 2,8 3 ) czasami pożądane jest aby przedział pierwszy miał tylko górną granicę, a przedział ostatni tylko dolną granicę ( np. poniżej 60 i powyżej 74 ) czasami pożądana jest znajomość częstości względnych (stosunkowych) tj. udziału części do całości zbiorowości. W naszym przypadku w pierwszym przedziale klasowym znalazło się 6 studentów na ogólną ich liczbę 36 ( wagę od 60 do 62 kg miało 6-iu spośród 36 studentów). Obliczamy to następująco: 6 / 36 = 0,167 = 16,7% 17%. Wartość 0,167 lub 16,7% jest częstością względną dla pierwszej klasy.

18 Częstość względna klasy = liczebność klasy / liczebność ogółu zbiorowości Tablica 3 Klasa i Przedziały klasowe x 0i – x 1i Liczebność n i Częstości względne w i (wskaźnik struktury) 160 – 6266/36 = 0, – /36 = 0, – /36 = 0, – 7155/36 = 0, /36 = 0,083

19 Częstości względne w i mogą być podane w % Tablica 4. Klasa i Przedziały klasowe x 0i – x 1i Liczebność n i Częstości względne w i (struktura w %) 160 – 62616,7% 263 – ,3% 366 – ,8% 469 – 71513,9% ,3%

20 tablica rozkładu liczebności może zawierać również kolumnę pokazującą skumulowane liczebności dla wszystkich klas końcowa wartość skumulowanych liczebności jest dokładnie równa całkowitej liczebności badanej zbiorowości Tablica 5 Klasa i Przedziały klasowe x 0i – x 1i Liczebność n i Skumulowane liczebności 160 – – – –

21 tablica rozkładu liczebności może zawierać również kolumnę pokazującą skumulowane częstości dla wszystkich klas suma względnych częstości nie jest zawsze dokładnie równa 1 (100%). Dlatego powinniśmy oczekiwać przybliżonych wartości dla częstości względnych T ablica 6 Klasa i Przedziały klasowe x 0i – x 1i Częstości względne w i Skumulowane częstości względne 160 – 620, – 650,3330, – 680,2780, – 710,1390, ,0831,000

22 Wybór co do liczby klas jest zawsze subiektywny. Brak jest zasad dotyczących stosowanych granic przedziałów klasowych, ale zawsze pożądana jest ta sama rozpiętość przedziałów klasowych. Jeśli rozpatrzymy tę samą zbiorowość danych i uporządkujemy je według innych granic przedziałów klasowych to rezultaty będą zupełnie inne. Przykład 3 c.d. populacja – studenci statystyki WSMiZ w Sochaczewie (36 studentów) badana cecha – waga (w kg) ilość wariantów cechy bardzo duża - 68,63,67,65,69,72,62,64,66,68,66,62,60,70,71,63,67,63,66,65,69,67,72,68,74,65,66,61, 64,61,62,64,65,65,71,64. Dla powyższego zestawu danych zbudować rozkład częstości dla k=8 klas.

23 Tablica 7. rozpiętość przedziałów klasowych - (74-60)/8= 1,75 2 Klasa i Przedziały klasowe x 0i – x 1i Liczebność n i


Pobierz ppt "Prezentacja danych liczbowych Wykład 2 dr Małgorzata Radziukiewicz."

Podobne prezentacje


Reklamy Google