Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Lummer i Pringsheim. Rola doświadczenia w narodzinach fizyki kwantów

Podobne prezentacje


Prezentacja na temat: "Lummer i Pringsheim. Rola doświadczenia w narodzinach fizyki kwantów"— Zapis prezentacji:

1 Lummer i Pringsheim. Rola doświadczenia w narodzinach fizyki kwantów
Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. Pringsheim, Ernst ( ) German physicist whose experimental work on the nature of thermal radiation led directly to the quantum theory. In 1881 he developed a spectrometer that made the first accurate measurements of wavelengths in the infrared region. Pringsheim was born in Breslau (now Wroclaw, Poland) and studied at several German universities. He was professor at Berlin and at Breslau from Pringsheim began in 1896 to collaborate with Otto Lummer on a study of black-body radiation (see black body. This led to a verification of the Stefan-Boltzmann law that relates the energy radiated by a body to its absolute temperature, but in 1899 they found anomalies in laws that had been devised to express the energy of the radiation in terms of its frequency and temperature. The results encouraged Max Planck to find a new radiation law that would account for the experimental results and in 1900, Planck arrived at such a law by assuming that the energy of the radiation consists of indivisible units that he called quanta. This marked the founding of the quantum theory. Jerzy Karpiuk, Zakład Fotochemii i Spektroskopii, ICHF PAN

2 „Rosencrantz i Guildenstern are dead”
Jeden z najbardziej zaskakujących kontrastów w całej literaturze występuje pod koniec „Hamleta” Szekspira. Na scenę usłaną ciałami bohaterów – Hamleta, Laertesa, Klaudiusza i Gertrudy wkraczają ambasadorowie z Anglii i zawiadamiają, że “Rosenkranz i Guildestern nie żyją”. Nikt się tym nie przejmuje. Podobna reakcja mogłaby wystąpić wśród fizyków lub nawet historyków i filozofów nauki, gdyby ktoś zawiadomił, że “Lummer i Pringsheim nie żyją”. One of the great anticlimaxes in all of literature occurs at the end of Shakespeare’s Hamlet. On stage strewn with noble and heroic corpus —Hamlet, Laertes, Claudius, and Gertrude — the ambassadors from England arrive and announce that “Rosencrantz and Guildenstern are dead”. No one cares. A similar reaction might be produced among a group of physicists, or even among historians and philosophers of science, were someone to announce that “Lummer and Pringsheim are dead”. Allan Franklin, The Neglect of Experiment, 1986

3 14.12.1900 - data narodzin* teorii kwantów
"Das war eine rein formale Annahme, und ich dachte mir eigentlich nicht viel dabei, sondern eben nur das, dass ich unter allen Umständen, koste es, was es wolle, ein positives Resultat herbeiführen musste.” (1931) „Było to czysto formalne założenie i właściwie niewiele sobie przy tym myślałem, ale właśnie to tylko, że w każdym razie, za wszelką cenę, muszę dojść do pozytywnego wyniku.” Max Planck 1858 23. April: Max Planck wird in Kiel als Sohn des Juraprofessors Wilhelm Planck geboren Beginn des Physikstudiums in München Nach zwei Semestern in Berlin schließt er dort sein Studium mit einer Promotion "Über den 2. Hauptsatz der mechanischen Wärmetheorie" ab Nach seiner Habilitation "Über Gleichgewichtszustände isotroper Körper in verschiedenen Temperaturen" wird er Privatdozent in München Planck wird als außerordentlicher Professor für mathematische Physik nach Kiel berufen Heirat mit Marie Merck. Aus der Ehe gehen vier Kinder hervor Wechsel als außerordentlicher Professor nach Berlin Planck erhält den Lehrstuhl für theoretische Physik in Berlin Mitglied der Preußischen Akademie der Wissenschaften. Planck befaßt sich mit der Thermodynamik Mai: Planck entdeckt eine neue Naturkonstante, das nach ihm benannte Plancksche Wirkungsquantum Durch eine Interpolation entwickelt er das exakte Gesetz der schwarzen Wärmestrahlung, das "Plancksche Strahlungsgesetz". Planck begründet die Quantentheorie, die die Physik revolutioniert und sie zu einem Grundlagenfach der Naturwissenschaften macht. Erst mit weitergehenden Deutungen von Albert Einstein und dem Bohrschen Atommodell gelingt der Planckschen Quantentheorie zehn Jahre später der Durchbruch Planck ist Vorsitzender der Deutschen Physikalischen Gesellschaft Tod seiner Ehefrau Heirat mit Marga von Hoesslin Als Wissenschaftorganisator wird er ständiger Sekretär der Preußischen Akademie der Wissenschaften in der Physikalisch-Mathematischen Klasse Er wird Rektor der Berliner Universität Verleihung des Ordens Pour le Mérite für Wissenschaften und Künste /16 Planck hat abermals den Vorsitz der Deutschen Physikalischen Gesellschaft inne Für die Begründung der Quantentheorie erhält er den Nobelpreis für Physik Emeritierung Verleihung des Adlerschilds des Deutschen Reichs Juni: Aus Anlaß seines Goldenen Doktorjubiläums stiftet die Deutsche Physikalische Gesellschaft die Max-Planck-Medaille, deren erste Preisträger Planck und Einstein sind Präsident der Kaiser-Wilhelm-Gesellschaft zur Förderung der Wissenschaften (KWG) In einem persönlichen Gespräch warnt er Adolf Hitler vor den verheerenden Folgen der Entlassung von jüdischen und politisch mißliebigen Wissenschaftlern. Er selbst bemüht sich, die Entlassung einzelner jüdischer Wissenschaftler durch Verzögerung zu entschärfen Trotz offizieller Verbote organisiert er eine Gedenkfeier für seinen im Exil verstorbenen jüdischen Kollegen Fritz Haber Im Zusammenhang mit dem Attentatsversuch auf Hitler vom 20. Juli wird Plancks Sohn Erwin hingerichtet, der zum Kreis von Carl Friedrich Goerdeler gehörte Planck zieht nach Göttingen und wird wieder Präsident der KWG 4. Oktober: Max Planck stirbt in Göttingen Die KWG wird in der Bundesrepublik Deutschland als Max-Planck-Gesellschaft zur Förderung der Wissenschaften (MPG) zugelassen und entwickelt sich zur bedeutendsten außeruniversitären Forschungseinrichtung. Max Karl Ernst Ludwig Planck (1858 –1947) * A. Sommerfeld, Atombau und Spektrallinien, 1919, str. 4

4 Tradycyjny punkt widzenia
„It is rare in any form of progress or in any discovery that the success can be with truth attributed to one man... But of Planck it can be said, and it is universally true that the formation of the quantum theory is his alone.” H. T. Flint, Nature 181 (1958) 1098 „It is rare in any form of progress or in any discovery that the success can be with truth attributed to one man... But of Planck it can be said, and it is universally true that the formation of the quantum theory is his alone.” H. T. Flint, Nature 181 (1958) 1098 „Planck’s unique position is best illustrated by what is in my opinion the singular fact that he had no precursors or competitors whose thoughs moved in a similar direction.” E. Segrè, Phys. Bl. 23 (1967) 62 „Did Planck create them out of nothing?” H. Kangro, Early History of Planck’s Radiation Law (1976) p. 1

5 Głos samego bohatera ... M. Planck o nominacji do nagrody Nobla w dziedzinie fizyki za rok 1908. "Nie jest bynajmniej tak, że prace teoretyczne wskazywały drogę badaniom doświadczalnym; słuszniej jest powiedzieć, że było wręcz odwrotnie." Nagrodę należało zatem podzielić między "czołowego teoretyka i czołowego eksperymentatora, w tym wypadku chyba Lummera". R. Torge: Otto Lummer, Fritz Reiche i Mieczysław Wolfke: szkice biograficzne. Postępy Fizyki 53 (2002) 201 „Wydaje się, że o ile formuła, zyskawszy postać wzoru matematycznego, przeżyła całkiem dobrze, to eksperymenty, na których ją ugruntowano, stosunkowo szybko popadły w zapomnienie.” H. Kangro, Early History of Planck’s Radiation Law, 1976, p. 2 "W roku 1908 Komitet Noblowski pod przewodnictwem Knuta Angströma ( ) zaproponował nagrodę w dziedzinie fizyki Planckowi, który jednak długo się wahał, czy ją przyjąć: "Nie jest bynajmniej tak, że prace teoretyczne wskazywały drogę badaniom doświadczalnym; słuszniej jest powiedziać, że było wręcz odwrotnie." Według niego Nagrodę należało zatem podzielić między "czołowego teoretyka i czołowego eksperymentatora, w tym wypadku chyba Lummera". Nie było to jednak możliwe, bo Lummer nie miał nominacji. Zgłosił ją dopiero w latach Emil Warburg wspólnie z Planckiem i Wilhelmem Wienem ( ) "ze względu na osiągnięcia w teoretycznych i doświadczalnych badaniach praw promieniowania".

6 Miejsce narodzin fizyki kwantów: Physikalisch-Technische Reichsanstalt
1887 H. von Helmholtz AN DIESER STELLE BEFAND SICH BIS 1945 DAS PHYSIKALISCHE INSTITUT DER BERLINER UNIVERSITÄT. 1877/78 FÜR / HERMANN HELMHOLTZ GEBAUT, WAR ES WIRKUNGSSTÄTTE BEDEUTENDER PHYSIKER, DARUNTER DIE NOBELPREISTRÄGER / JAMES FRANCK GUSTAV HERTZ WALTHER NERNST WILHELM WIEN / MAX PLANCK BEGRÜNDETE HIER AM IN EINEM VORTRAG DIE QUANTENTHEORIE Technische Daten: Metalltafel 238,0 cm x 40,0 cm Standort: Wilhelmstraße 67a (Mitte) Besondere Ortsangabe: am neuen ARD-Hauptstadtstudio Verkehrsanbindung U 2 bis Mohrenstraße, Bus 348 bis Leipziger/ Wilhelmstraße Obserwatorium PTR

7 Ustawa o jednostkach wielkości elektrycznych
Om jest jednostką oporu elektrycznego. Jest on równy oporowi słupa rtęci o temperaturze topniejącego lodu, którego długość przy jednakowym na całej długości przekroju 1 mm2 wynosi 106,3 cm i, którego masa wynosi 14,4521 grama. PTR, 1898

8 W poszukiwaniu wiarygodnego wzorca światła
płytka platynowa 1 cm2 o Ttop Pt (2042 K) (1884, Kongres Elektryczny w Paryżu) Świeca Hefnera (wzorzec w Niemczech: 1883 – 1947) (octan amylu, PTR) wrażliwa na zmiany wilgotności powietrza Lampa Carcel’a (wzorzec we Francji) (olej rzepakowy - 42 g/h) German physicist who formulated an equation describing the blackbody spectrum in Wien and Rayleigh had also developed equations, but Wien's only worked at high frequencies, and Rayleigh's only worked at low frequencies. Planck's spectrum was obtained by postulating that energy was directly proportional to frequency ( ). Planck believed that this quantization applied only to the absorption and emission of energy by matter, not to electromagnetic waves themselves. However, it turned out to be much more general than he could have imagined. Planck received the Nobel Prize in physics in 1918 for his quantum theory after it had been successfully applied to the photoelectric effect by Einstein and the atom by Niels Bohr. Planck showed there were difficulties in relating the statistical theory of molecular motion to the thermodynamical approach. He also criticized the probabilistic interpretation of entropy. He was the first to write down the equation usually attributed to Boltzmann, . In fact, the constant k (as opposed to R/NA, where R is the universal gas constant and NA is Avogadro's number ) was first used by Planck in Lorentz and others called k Planck's constant until 1911 (Pais 1991, p. 60), when the term Boltzmann's constant became generally accepted. Planck was also a philosopher of science. In his Scientific Autobiography and Other Papers, he stated Planck's Principle, which holds that "A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die and a new generation grows up that is familiar with it." This view contradicts that forwarded by Karl Popper known as Popper's Principle. Karl Popper’s Principle: Austrian-born philosopher of science who defines science as a discipline founded on the creation of hypotheses that predict phenomena, preferably new ones, that can be tested. Popper's Principle holds that testability rather than truth should be the criterion for judging scientific truths. This principle views scientific progress in a different light than does Planck's Principle. Credit to: Na zdjęciu: Hefner-Kerze original Ówczesne źródła światła (żarówka [1879] czy lampa gazowa) promieniowały dużo energii w niewidzialnej części widma - konieczność przejścia od fotometrii do radiometrii Jak zrealizować absolutny pomiar natężenia światła i jak zdefiniować absolutną jednostkę natężenia światła ?

9 Laboratorium Promieniowania PTR
Das Strahlungslaboratorium der Berliner Physikalisch-Technischen Reichsanstalt, in dem jene Versuche durchgeführt wurden, die die Abweichungen vom Wienschen Strahlungsgesetz konstatierten. Ganz rechts (vor A) befindet sich der elektrisch geglühte schwarze Körper, dahinter ein Flächenbolometer. Der schwarze Körper konnte auf der optischen Bank bewegt und in verschiedene Messpositionen gebracht werden – so zum Lummer-Broduhnschen Spektralbolometer (C) oder zum Spektrobolometer (D). Das Bild dokumentiert weitere Instrumente zeitgenössischer Strahlungsforschung – so z. B. eine Photometerbank mit dem Lummer-Broduhnschen Kontrastphotometer (B). (aus [10] - [10] Müller-Pouillets Lehrbuch der Physik, Braunschweig 1909, Bd.2/3 (Optik), S. 627.)

10 Ferdinand Kurlbaum 1857 - 1927 Otto Lummer 1860 - 1925
Ernst Pringsheim German physicist who formulated an equation describing the blackbody spectrum in Wien and Rayleigh had also developed equations, but Wien's only worked at high frequencies, and Rayleigh's only worked at low frequencies. Planck's spectrum was obtained by postulating that energy was directly proportional to frequency ( ). Planck believed that this quantization applied only to the absorption and emission of energy by matter, not to electromagnetic waves themselves. However, it turned out to be much more general than he could have imagined. Planck received the Nobel Prize in physics in 1918 for his quantum theory after it had been successfully applied to the photoelectric effect by Einstein and the atom by Niels Bohr. Planck showed there were difficulties in relating the statistical theory of molecular motion to the thermodynamical approach. He also criticized the probabilistic interpretation of entropy. He was the first to write down the equation usually attributed to Boltzmann, . In fact, the constant k (as opposed to R/NA, where R is the universal gas constant and NA is Avogadro's number ) was first used by Planck in Lorentz and others called k Planck's constant until 1911 (Pais 1991, p. 60), when the term Boltzmann's constant became generally accepted. Planck was also a philosopher of science. In his Scientific Autobiography and Other Papers, he stated Planck's Principle, which holds that "A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die and a new generation grows up that is familiar with it." This view contradicts that forwarded by Karl Popper known as Popper's Principle. Karl Popper’s Principle: Austrian-born philosopher of science who defines science as a discipline founded on the creation of hypotheses that predict phenomena, preferably new ones, that can be tested. Popper's Principle holds that testability rather than truth should be the criterion for judging scientific truths. This principle views scientific progress in a different light than does Planck's Principle. Credit to: Heinrich Rubens Friedrich Paschen Wilhelm Wien

11 Gustav Kirchhoff – 1860 In 1859 Gustav Kirchhoff proved a theorem about blackbody radiation. A blackbody is an object that absorbs all the energy that falls upon it and, because it reflects no light, it would appear black to an observer. A blackbody is also a perfect emitter and Kirchhoff proved that the energy emitted E depends only on the temperature T and the frequency v of the emitted energy, i.e. E = J(T,v). He challenged physicists to find the function J. G. Kirchhoff: Über das Verhältnis zwischen dem Emissionsvermögen und dem Absorptions-vermögen der Körper für Licht und Wärme, Annalen der Physik 19 (1860) 275.

12 Zagadnienie Kirchoffa: 1860 – 1900
Trudności eksperymentalne: źródło promieniowania detektor metoda pomiarów spektralnych „Kiedy pewna przestrzeń jest otoczona ciałami o jednakowej temperaturze i przez ciała te nie mogą przenikać żadne promienie, to każdy promień w tej przestrzeni jest w swojej jakości i natężeniu właśnie tego rodzaju, jakby pochodził z doskonale czarnego ciała o tej samej temperaturze, jest zatem niezależny od właściwości i kształtu ciała i uwarunkowany tylko jego temperaturą.” In 1859 Gustav Kirchhoff proved a theorem about blackbody radiation. A blackbody is an object that absorbs all the energy that falls upon it and, because it reflects no light, it would appear black to an observer. A blackbody is also a perfect emitter and Kirchhoff proved that the energy emitted E depends only on the temperature T and the frequency v of the emitted energy, i.e. E = J(T,v). He challenged physicists to find the function J. G. Kirchhoff, Annalen der Physik 19 (1860) 275.

13 Początkowo zaniedbywano problem znaczenia „czerni” ciał dla emitowanego promieniowania („man hat überhaupt außer acht gelassen”) Jako c.d.cz. stosowano np. blaszki metalowe – czernione - c.d.cz. tylko w ograniczonym zakresie T (Ch. Christiansen, 1880) Wien i Lummer (1895): „trzeba odejść od tych sztucznie czernionych blaszek” (“man muß überhaupt von den künstlich geschwärzten Blechen absehen” und stattdessen “die Strahlung eines schwarzen Körpers als den Zustand des Wärmegleichgewichts aufzufassen... Um hierauf auch eine praktisch brauchbare Methode zu gründen, durch die man die Strahlung eines schwarzen Körpers in beliebiger Annäherung herstellen kann, muss man einen Hohlraum auf gleichmässige Temperatur bringen und durch die Öffnung seine Strahlung nach aussen gelangen lassen”.) Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. W. Wien, O. Lummer, Annalen der Physik 56 (1895) 453.

14 O. Lummer & E. Pringsheim: 1895 - 1898
ciekłe powietrze wrząca woda wrząca saletra gorący gaz -188°C 680°C 1200°C Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. Wnęki: cylindryczne i sferyczne, metalowe dwuścienne, kuliste, porcelanowe powierzchnia kryta sadzą, FeO lub UO2 100°C D. Hoffmann, On the Experimental Context of Planck’s Foundation of Quantum Theory, 2000

15 Elektrycznie wygrzewane c.d.cz. (Lummer & Kurlbaum, 1898)
4 cm 40 cm ciało doskonale czarne: platynowa blaszka 0,01 mm 100 A / 1500°C grafit °C (1903) Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. Lummer: Betriebsblindheit ślepota zawodowa W. Wien, O. Lummer, Annalen der Physik 56 (1895) 453.

16 Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. H. J. Kostkowski, R. D. Lee, Theory and methods of optical pyrometry, NBS Special Publication 300: Precision measurements and calibration. Temperature, Washington 1968, p. 361

17 Samuel P. Langley ( ) Bolometr udoskonalony termometr oporowy 1880: T  10-5 °C, ± 1% Today Langley is primarily remembered for his pioneering work on the measurement of the solar constant, and equally pioneering studies of the infrared portion of the solar spectrum. By 1880 Langley has perfected his bolometer. This instrument was based on a then already well-known property of metals, namely the fact that their electrical resistivity is a sensitive function of temperature. Langley's bolometer was so sensitive that it could detect thermal radiation from a cow a quarter of a mile away. His first ``map'' of the infrared portion of the solar spectrum was published in In 1895, badly in need of addidional manpower due to ever increasing administrative duties, Langley hired Charles Greeley Abbot ( ), then a 23 year old graduate student at the Massachusetts Institute of Technology. Abbot became equally fascinated with the solar constant problem, and carried out Langley's program with flying colors for the following half century. „Langley's bolometer was so sensitive that it could detect thermal radiation from a cow a quarter of a mile away.” termometr oporowy: Adolph F. Svenberg, Uppsala, 1851:

18 Bolometr w służbie fotometrii
0°C – 10 m 100 °C – 7.5 m Równanie Michelsona (1887) dobrze odtwarzało dane Langleya Today Langley is primarily remembered for his pioneering work on the measurement of the solar constant, and equally pioneering studies of the infrared portion of the solar spectrum. By 1880 Langley has perfected his bolometer. This instrument was based on a then already well-known property of metals, namely the fact that their electrical resistivity is a sensitive function of temperature. Langley's bolometer was so sensitive that it could detect thermal radiation from a cow a quarter of a mile away. His first ``map'' of the infrared portion of the solar spectrum was published in In 1895, badly in need of addidional manpower due to ever increasing administrative duties, Langley hired Charles Greeley Abbot ( ), then a 23 year old graduate student at the Massachusetts Institute of Technology. Abbot became equally fascinated with the solar constant problem, and carried out Langley's program with flying colors for the following half century. „...stoi przed nami wielki problem czekający na rozwiązanie. Mam na myśli związek między temperaturą a promieniowaniem, nie wiemy bowiem prawie nic na temat tego zagadnienia, którego znajomość umożliwi nam nowe spojrzenie na niemal wszystkie procesy zachodzące w naturze.” S. P. Langley, 1889 (S. Barr, Am. J. Phys. 28 (1960) 42) W. Michelson, J. de Phys. 6 (1887) 467.

19 Rozwój technik detekcji
Bolometr Lummera: T  10-7 °C, ± 1% Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. Raport PTR 1899/1900: Celem badań optycznych jest potwierdzenie fundamentalnych praw promieniowania cieplnego i świetlnego.

20 Detektory mikrostrukturalne z XIX w.
Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope.

21 Prawa promieniowania Potwierdzono prawo Stefana-Boltzmana (± 1%)
J. Stefan (1879) + L. Boltzmann (1884) = prawo Stefana-Boltzmanna W. Wien (1893) - prawo przesunięć Wiena W. Wien (1896) - prawo Wiena (do połowy 1900 zgodne z danymi eksperymentalnymi) Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. Potwierdzono prawo Stefana-Boltzmana (± 1%) (bolometr powierzchniowy) Prawo przesunięć Wiena (bolometr liniowy)

22 Precyzyjne pomiary widma c.d.cz.
Test prawa Wiena rozkładu energii c.d.cz. (od roku Wiena-Plancka) Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. Spektrobolometr

23 Odchylenia od rozkładu Wiena-Plancka
: pomiary do 6 m, T: °C „wskazują na niewielkie odchylenia od rozkładu Wiena-Plancka” Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. O. Lummer, E. Pringsheim, Verh. Deutsch. Phys. Gesell. 1 (1899) 36.

24 Odchylenia od rozkładu Wiena-Plancka
: pomiary do 8,3 m, T do 1650°C: „rozbieżności między teorią a doświadczeniem mają charakter systematyczny” Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. O. Lummer, E. Pringsheim, Verh. Deutsch. Phys. Gesell. 1 (1899) 226.

25 Odchylenia od rozkładu Wiena-Plancka
: w pomiarach do 18 m, T do 1772°C: „rozbieżności między teorią a doświadczeniem sięgały 50%” Kontra Paschena: w F. Paschen na podstawie swoich pomiarów potwierdza rozkład Wiena-Plancka Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. O. Lummer, E. Pringsheim, Verh. Deutsch. Phys. Gesell. 2 (1900) 163.

26 Equations Wien Thiesen Lummer & Pringsheim Planck (PTR, 1896)
(PTR, Feb. 1900) Equations Lummer & Pringsheim (PTR, Feb. 1900) Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope. Planck (Oct. 19, 1900)

27 Odchylenia od rozkładu Wiena-Plancka
H. Rubens i F. Kurlbaum Metoda promieni resztkowych: pomiary rozkładu energii do 50 m. Jednoznaczne stwierdzenie odstępstw od rozkładu Wiena-Plancka. (die Abweichungen lassen sich nicht wegdiskutieren) Lummer, Otto Richard ( ) German physicist who specialized in optics and thermal radiation. His investigations led directly to the radiation formula of Max Planck, which marked the beginning of quantum theory. Lummer was born in Jena, Saxony, and attended a number of different German universities. He became an assistant to Hermann Helmholtz at Berlin 1884 and moved with him to the newly established Physikalische Technische Reichsanstalt in Berlin In 1894 Lummer was made professor there. From 1904 he was professor at Breslau (now Wroclaw, Poland). In collaboration with Eugen Brodhun, he designed a photometer (the Lummer-Brodhun cube) and worked towards the establishment of an international standard of luminosity. Lummer and Wilhelm Wien made the first practical black-body radiator by making a small aperture in a hollow sphere. When heated to a particular temperature, it behaved like an ideal black body. Studying emission from black bodies, Lummer later confirmed Wien's displacement law but found an anomaly in Wien's radiation law. Lummer designed a mercury vapour lamp for use when monochromatic light is required, for instance in fluorescence microscopy, and in 1902 designed a high-resolution spectroscope.

28 Wersja teoretyków dla studentów
"Ale przecież i tak dla wykładających mechanikę kwantową na uniwersytetach główną troską jest to, jak dostosować realizowane zagadnienia do obniżającego się poziomu studentów." Jan Sobczyk, z recenzji książki: "Teoria kwantów. Mechanika falowa", I. Białynicki-Birula, M. Cieplak, J. Kamiński, PWN Warszawa, Postępy fizyki 53 (4) (2002) 514 "Planck przedstawił swój wzór na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Berlinie 19 października 1900 r. Następnego ranka Rubens zakomunikował Planckowi, że w ciągu nocy wzór (4) został bardzo dokładnie porównany z danymi Rubensa i Kurlbauma i że uzyskano dobrą zgodność." "Teoria kwantów. Mechanika falowa", I. Białynicki-Birula, M. Cieplak, J. Kamiński, PWN Warszawa, 2001, str. 15 Jak było naprawdę? "Kiedy w niedzielę, 7 października 1900 r. Rubens wraz z żoną złożyli Planckowi wizytę, rozmowa zeszła na pomiary, którymi zajmował się Rubens. Powiedział on, że do najdłuższych fal stosuje się prawo podane niedawno przez Rayleigh'a. Ogólnie obowiązujący wzór na [rozkład] promieniowania musiałby dla dużych T przechodzić w każdym przypadku w tę właśnie formę. Zaraz po tej rozmowie Planck wykonał nastepujące rachunki... Jeszcze tego samego wieczoru zakomunikował ten wzór Rubensowi na karcie pocztowej, którą Rubens otrzymał następnego ranka. Dzień lub dwa później Rubens przyszedł ponownie do Plancka przynosząc mu wiadomość, że nowa formuła wzorowo (vorbildlich) zgadza się z jego obserwacjami." G. Hettner, "Die Bedeutung von Rubens' Arbeiten für die Plancksche Strahlungsformel." Die Naturwissenschaften 10 (1922) 1036 Als am Sonntag, dem 7. Oktober 1900, Rubens mit seiner Frau bei Planck einen Besuch machte, kam das Gespräch auch auf die Messungen, mit denen Rubens beschäftigt war. Er erzählte, daß bei seinen längsten Wellen das kürzlich von Rayleigh aufgestellte Gesetz... gelte. Eine allgemeingültige Strahlungsformel müsse jedenfalls für große  T in diese Form übergehen. Auf dieses Gespräch hin stellte nun Planck sogleich folgende Rechnung an... Noch am demselben Abend teilte er Rubens diese Formel auf einer Postkarte mit, die dieser am nächsten Morgen er-hielt. Ein oder zwei Tage darauf ging Rubens wieder zu Planck und konnte ihm die Nachricht bringen, daß die neue Formel vorzüglich mit seinen Beobachtungen stimme.

29 Posiedzenie Towarzystwa Fizycznego : -        ogłoszenia "komercyjne" -        (długie) wspomnienie pośmiertne po prof.Reinholdzie Hoppe -        ... wybija godzina (bricht eine Sternstunde der Wissenschaft an) - H.-G. Schöpf Zapiski z protokółu z posiedzenia (z fotokopii) F. Kurlbaum i H. Rubens: "Über die Emission langer Wellen durch den schwarzen Körper bei verschiedenen Temperaturen" M. Planck macht hierzu einige bemerkungen. An einer eingehenden Disskussion beteiligten sich die Herren: Rubens, Thiessen, Pringsheim, Lummer).

30 Wien Planck Zdziwilibyśmy się, gdybyśmy mogli położyć na wadze substancję umysłową (Gehirnsubstanz), którą fizycy-teoretycy złożyli w ofierze na ołtarzu tej uniwersalnej funkcji; i końca tej strasznej ofiary nawet nie można przewidzieć! Co więcej: pochłonęła ona mechanikę klasyczną, a i nie można przewidzieć, czy równania elektrodynamiki Maxwella przetrwają kryzys, który ta funkcja przyniosła. A. Einstein Hefner-Kerze original


Pobierz ppt "Lummer i Pringsheim. Rola doświadczenia w narodzinach fizyki kwantów"

Podobne prezentacje


Reklamy Google