Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Informatyka PWSZ Tarnów. Cele kursu Ćwiczenia – zapewnić umiejętności potrzebne do przetrwania studiów Wykład – Prezentacja najbardziej istotnych zagadnień.

Podobne prezentacje


Prezentacja na temat: "Informatyka PWSZ Tarnów. Cele kursu Ćwiczenia – zapewnić umiejętności potrzebne do przetrwania studiów Wykład – Prezentacja najbardziej istotnych zagadnień."— Zapis prezentacji:

1 Informatyka PWSZ Tarnów

2 Cele kursu Ćwiczenia – zapewnić umiejętności potrzebne do przetrwania studiów Wykład – Prezentacja najbardziej istotnych zagadnień z zakresu technologii informacyjnej, ze szczególnym uwzględnieniem ich dalszego praktycznego zastosowania. Dyskusja bieżących problemów związanych z prezentowanymi zagadnieniami. Wprowadzenie do efektywnego wykorzystania systemów komputerowych i sieciowych.

3 Ćwiczenia - Pisanie tekstów naukowych (wzory matematyczne, chemiczne, tabele itp.) Darmowe oprogramowanie OpenOffice (Windows, Linux) -Obliczenia: -numeryczne Język R (do ilustracji wybranych algorytmów Fortran) arkusz kalkulacyjny Excel, Euler - symboliczne Maxima, Euler - Wizualizacja danych naukowych – R, gnuplot, - Edytory struktur molekularnych – Avogadro - obsługa systemów operacyjnych Windows i Linux - podstawowe komendy systemu - oprogramowanie narzędziowe (edytory, archiwizatory) - oprogramowanie sieciowe - oprogramowanie antywirusowe

4 Informatyka???

5 Nauka o komputerach??

6 Różne definicje informatyki: a) Informatyka jest to dziedzina wiedzy i działalności człowieka zajmująca się gromadzeniem, przetwarzaniem i wykorzystywaniem informacji. Informatyka zajmuje się również badaniem, jak te informacje przetworzyć.

7 b) Informatyka to dziedzina, która zajmuje się przetwarzaniem informacji za pomocą pewnych schematów postępowania (zwanych algorytmami). Wynikiem takiego procesu jest znów informacja. Przy czym poprzez przetwarzanie nie należy wyłącznie rozumieć „zamianę” czy „przekształcenie” jednej informacji w drugą. Do zadań informatyki należy również wyszukiwanie oraz udostępnianie czy prezentacja informacji. Wszystko to będziemy jednak traktowali jako szersze ujecie „przetwarzania”. c 2009 by P. Fulmanski, Uniwersytet Łódzki. Wersja z dnia: 9 stycznia 2010

8 c) Informatyka – nauka o przetwarzaniu informacji przy użyciu środków technicznych. W. Turski: d) Informatyką określa się całokształt działalności obejmującej wiedzę i umiejętności jej wykorzystania, a dotyczącej zastosowania metod i środków technicznych do sprawnego: - zbierania, - przetwarzania (analizy), - przechowywania informacji (danych) - przesyłania informacji w celu sprawnego i określonego (celowego) działania danego systemu. e) Informatyka (computer science, computing science, information technology (IT) ) – dziedzina nauki i techniki zajmująca się przetwarzaniem informacji – w tym technologiami przetwarzania informacji oraz technologiami wytwarzania systemów przetwarzających informacje. Romuald Marczyński

9 f) Informatyka (w sensie anglojęzycznego terminu Informatics) jest studiowaniem systemów pozyskujących, reprezentujących, przetwarzających i wytwarzających informacje włączając w to wszystkie obliczeniowe, kognitywne i społeczne aspekty. Zasadniczym przedmiotem zainteresowania jest przetwarzanie (przekształcanie) informacji czy to przez procesy obliczeniowe czy komunikacyjne, czy to przez organizmy żywe czy urządzenia. W tym sensie informatykę należy postrzegać jako dziedzinę znacznie szersza niż informatyka w sensie Computer Science. Można powiedzieć, ze informatyka (w sensie Informatics) ogólnie pojęty aspekt pozyskiwania, przetwarzania, składowania itd. informacji rozciąga zarówno nad maszynami (komputery) jak i istotami żywymi a ogólnie, wszystkim tym co ma jakikolwiek związek z informacja P. Fulmanski, Uniwersytet Łódzki. Wersja z dnia: 9 stycznia 2010

10 Najważniejsze dziedziny badań współczesnej informatyki - Teoria informacji Teoria informacji zajmuje sie informacją, jej transmisją, jak również kodowaniem danych w celu pewniejszego lub szybszego przesłania jej od nadawcy do odbiorcy. - Algorytmika Tworzenie i badanie algorytmów

11 Algorytm – w matematyce oraz informatyce to skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do niezawodnego wykonania pewnego zadania w skończonym czasie. Powinien spełniać następujące wymagania: 1. Musi posiadać określony stan początkowy, czyli operacje, od której zaczyna sie jego realizacja. 2. Liczba operacji potrzebnych do zakończenia pracy musi być skończona – warunek dyskretnosci. 3. Musi dać się zastosować do rozwiązywania całej klasy zagadnień, a nie jednego konkretnego zadania – warunek uniwersalnosci. 4. Interpretacja poszczególnych etapów wykonania musi być jednoznaczna – warunek jednoznacznosci. 5. Cel musi być osiągnięty w akceptowalnym czasie – warunek efektywnosci. Co oznacza akceptowalny to zależy od zadania. 6. Musi posiadać wyróżniony koniec.

12 Najważniejsze dziedziny badań współczesnej informatyki (cd.) - Bazy danych - Grafika komputerowa - Programowanie - Systemy operacyjne - Sieci komputerowe - Kryptografia - Sztuczna inteligencja

13 Informacja ??? a) Informacja (definicja ogólna) to taki czynnik, któremu człowiek może przypisać określony sens (znaczenie), aby móc ją wykorzystywać do różnych celów. Informacja (definicja informatyczna) to zbiór danych zebranych w celu ich przetwarzania i otrzymania wyników (nowych danych)

14 b) Każdy czynnik zmniejszający stopień´ niewiedzy o jakimś´ zjawisku czy obiekcie nazywamy informacją Tomasz Kwiatkowski Obserwatorium Astronomiczne UAM, Poznań c) Claude Shannon ( ) – komunikat ma tym więcej informacji im mniejsze jest prawdopodobieństwo jego wystąpienia. d) Informacja obiektywna W cybernetyce i teorii informacji najbardziej ogólnie: każde rozpoznaniecybernetyceteorii informacji stanustanu układu, odróżnialnego od innego stanu tego układu (stanu wyróżnionego);układu wyróżnienie pewnego stanu wyróżnionego (odróżnialnego) z repertuaru (zbioru stanów wyróżnionych). "...w pojęciu informacji istotne jest nie samo zaistniałe zjawisko, lecz jego stosunek do zbioru zdarzeń, które mogły były zaistnieć". Można odróżnić: 1.informację swobodną, kiedy możliwosci (stany, zdarzenia) uważamy za abstrakcyjne i nie przypisujemy im żadnego znaczenia fizycznego, 2. informację związaną, kiedy możliwosci (stany, zdarzenia) mogą być interpretowane jako mikrostany (lub zbiory mikrostanów) pewnegomikrostany układu fizycznego układu fizycznego. Informacja zawarta w stanach układu kwantowego to informacja kwantowa.układu kwantowegoinformacja kwantowa Wikipedia.pl

15 1.Ilość informacji otrzymanej przy zajściu zdarzenia x i (entropia tego zdarzenia, entropia indywidualna) to (Hartley 1928): gdzie: I i - ilość informacji otrzymanej przy zajściu zdarzenia xi, p i - prawdopodobieństwo zajścia zdarzenia xi, r - podstawa logarytmu.logarytmu W teorii informacji najczęściej stosuje się logarytm o podstawie r = 2, wówczas jednostką informacji jest bit (szanon).jednostką informacjibit Przy r = e jednostką jest nat (nit), natomiastenat przy r = 10 - dit (hartley).dit

16 2. Przeciętna ilość informacji przypadająca na zajście zdarzenia z pewnego zbioru n zdarzeń (entropia bezwarunkowa tego zbioru, entropia przeciętna) jest średnią arytmetyczną ważoną ilości informacji otrzymywanej przy zajściu poszczególnych zdarzeń, gdzie wagami są prawdopodobieństwa tych zdarzeń (Shannon 1948): gdzie: H(X) - entropia bezwarunkowa zbioru X, n - liczba zdarzeń w zbiorze, p i - prawdopodobieństwo zajścia zdarzenia x i.

17 Przechowywanie i przekazywanie informacji KOMUNIKAT – zakodowana wiadomość zawierająca pewną ilość informacji; Bit – BInary digiT – cyfra binarna – jednostka informacji wywodząca się z prawdopodobieństwa wystąpienia komunikatu (p=0,5)

18 Ilość bitów k = log2 (p) = - log2 (p) p – prawdopodobieństwo wystąpienia komunikatu Np. p = 1 k = 0 p = 0,5 k = 1 p = 0,01 k = 6,64 p = 1/256 k = 8 (bajt) kod komunikatu – słowo kodowe długość słowa kodowego – (const – stała lub var – zmienna) B (bajt - byte) – 8 bitów - (binarne słowo kodowe o długości 8 znaków) 2 8 = 256 KB = 1024 B (2 10 ) np. ( ) 2 = (135) 10 kB = 1000 B  === k = tysiąc (kilo) ( ) 2 = (255) 10 MB = 1024 KB GB = 1024 MB (gigabajt) TB = 1024 GB (terabajt) PB = 1024 TB (petabajt)

19 Zapisy dwójkowe ą zbyt długie do łatwego pamiętania kod hexadecymalny – bajt dzielony na półbajty (ang. „nibble”) i każdy jest kodowany w systemie 16-kowym, np = O = A = C = F D ==  #7D

20 kod ósemkowy – podstawa 8 BCD – Binary Coded Decimal (59) 10 = (158) 10 = ( ) 2 = #9E = (256) 8 = ( ) BCD

21 Liczba jest pewnym abstrakcyjnym bytem wykorzystywanym do zliczania i mierzenia. Symbol lub słowo jezyka naturalnego wyrazajace liczbę nazywamy numerałem lub cyfrą (ang. numeral, digit) a w jezyku potocznym, po prostu liczbą. 34i XXXIV to dwa różne numerały reprezentujące tę samą liczbę System liczbowy (SL) jest sposobem reprezentacji liczb przy uzyciu cyfr (numerałów) w jednolity sposób. Rodzaje systemów liczbowych: 1)Unarny SL – każda liczba naturalna jest reprezentowana przez n-krotne powtórzenie znaku reprezentującego jednostkę np. IIII Takie systemy nazywamy addytywnymi (żeby znaleźć wartość liczby należy dodać wartości reprezentowane przez cyfry (tutaj jednostki)

22 Rzymski SL Symbol Wartość I 1 (unus) V 5 (quinque) X 10 (decem) L 50 (quinquaginta) C 100 (centum) D 500 (quingenti) M 1000 (mille) Do zapisu większych liczb używano dodatkowych symboli: | (pionowa kreska) – liczba pomiędzy takimi kreskami mnożona przez 100 |MC| = ( )*100 = = ( )*1000 = Jeżeli przed symbolem o większej wartości występował symbol o mniejszej wartości to oznaczało to odejmowanie. Jeżeli dana liczba mogła być zapisana na wiele sposobów to poprawny był zapis bardziej zwarty: np. IX zamiast VIIII

23 Pozycyjnym systemem liczbowym (ang. positional numeral system) nazywamy parę (b;D), Gdzie: b jest liczbą naturalną nazywaną podstawą systemu (ang. base), D jest skończonym zbiorem b symboli {s 0 ; s 1 ; : : : ; s b }, nazywanych cyframi (ang. digits). System taki nazywamy systemem liczbowym o podstawie b (ang. base-b system). Każda liczba jest jednoznacznie reprezentowana jako ciąg cyfr a jej wartość zależy zarówno od cyfr jak i pozycji na jakich one wystepuja. Wartosc v ciagu d k dk -1 …. d 1 d 0 obliczamy według ponizszej formuły” v = d k b k + dk -1 b k-1 + : : : + d 1 b 1 + d 0 b 0 (2.1) gdzie d 0 ; : : : ; d k to cyfry danego SL.

24 System dwójkowy: Przejście z systemu dziesiętnego na dwójkowy (algorytm) – zamieniamy liczbę x zapisaną w systemie dziesiętnym na jej dwójkowy odpowiednik y: 1) Początek 2) Niech z = x 3) Podziel z przez 2, zapamiętaj wynik jako q 4) Jeżeli q jest całkowite zapisz 0 5) Jeżeli q nie jest całkowite zapisz 1 6) Jako nową wartość z weź całkowitą część liczby q 7) Jeżeli z jest różna od zera idź do punktu 3 8) Jeżeli z jest równe 0 idź do punktu 9 9) Koniec Poszczególne wyniki zapisuj od prawej do lewej! x = z = | 187*2 +1 (q =187, r = 1, y = 1) z = 187 | 93*2 +1 (q =93, r = 1, y = 11) z = 93 | 46*2 +1 (q =46, r = 1, y = 111) z = 46 | 23*2 +0 (q =23, r = 0, y = 0111) z = 23 | 11*2 +1 (q =11, r = 1, y = 10111) z = 11 | 5*2 +1 (q = 5, r = 1, y = ) z = 5 | 2*2 +1 (q = 2, r = 1, y = ) z = 2 | 1*2 +0 (q = 1, r = 0, y = ) z = 1 | 0*2 +1 (q =0, r = 1, y = ) z = 0

25 Ułamki 0, = 1* * * *2 -4 = 0,5 + 0, ,0625 = 0, Zamiana ułamka dziesiętnego na dwójkowy: 1. Start. 2. Niech w = x. 3. Mnożymy w przez Jeśli wynikiem operacji mnożenia jest liczba większa od jedności, zapisujemy na boku Jeśli wynikiem operacji mnożenia jest liczba mniejsza od jedności, zapisujemy na boku Ułamkową część wyniku – po odrzuceniu ewentualnej części całkowitej – zapisujemy jako w. 7. Jeśli w jest różne od 0, przechodzimy z powrotem do kroku Jeśli w jest równe 0, kończymy procedurę. 9. Koniec.

26 Dla 0, , otrzymujemy: 0,40625 | 2 * 0,40625 = 0,8125 0,8125 | 2 * 0,8125 = 1,625 0,625 | 2 * 0,625 = 1,25 0,25 | 2 * 0,25 = 0,5 0,5 | 2 * 0,5 = 1,0 0,0 | koniec Czyli 0, = 0, Kłopot? x = 0,3 0,3 | 2 * 0,3 = 0,6 0,6 | 2 * 0,6 = 1,2 0,2 | 2 * 0,2 = 0,4 0,4 | 2 * 0,4 = 0,8 0,8 | 2 * 0,8 = 1,6 0,6 |... Otrzymujemy ułamek dwójkowy okresowy, warto sprawdzić czy poprzestanie na 5-ciu cyfrach dwójkowych zapewni dobrą dokładność 0, = 0,25 + 0,03125 = 0, ?

27 Dane (informacja, którą najczęściej przetwarzamy): 1) Liczby a)Całkowite b)Rzeczywiste c)Zespolone 2)Wartości logiczne 3)Tekstowe 4) Dźwięki 5) Grafika (obrazy)

28 Liczby Całkowite Używane zazwyczaj do numerowania elementów list (spisów), liczenia czynności (także sterowania wykonaniem działań w komputerze) Mogą zajmować w pamięci komputera:

29 1 bajt, zakres wartości: bez znaku od 0 do 255 ze znakiem od -128 do bajty, zakres wartości: bez znaku od 0 do ze znakiem od do bajty, zakres wartości: bez znaku od 0 do ze znakiem od do bajtów, zakres wartości: bez znaku od 0 do ze znakiem od do

30 Liczby rzeczywiste Są niezbędne w obliczeniach naukowych i technicznych, Zwykle posługujemy się zapisem wykładniczym: np. 6,02*10 23 w tym przykładzie 6,02 to tzw. mantysa 23to cecha liczby Do zapisania liczb w pamięci komputera używamy liczb dwójkowych, czyli cecha i mantysa muszą być w ten sposób pamiętane. Kolejne liczby części ułamkowej mantysy odpowiadają kolejnym potęgom ujemnym liczby 2 np. 0, = 0,111 2 Jak zapamiętać położenie przecinka????

31 Skorzystamy z faktu, że zapis wykładniczy nie jest jednoznaczny co oznacza, że ta sama liczba może być zapisywana na nieskończenie wiele sposobów: 6,02*10 23 = 60,2*10 22 = 602,0*10 21 = 0,602*10 24 = ….. itd.. Jeżeli przyjmiemy umowę, że część całkowita mantysy jest zawsze równa zero, to możemy zrezygnować z pamiętania tej części liczby ograniczając się do pamiętania ułamka. Aby pamiętane liczby były możliwie dokładne umowa zakłada, że ułamek dwójkowy musi mieć na pierwszym miejscu jedynkę, czyli zawsze zaczyna się od ½ (tzw. warunek normalizacji zapisu). W tej sytuacji można zrezygnować z pamiętania przecinka. Pierwszy bit w zapisie mantysy pełni rolę znaku liczby, stąd sama mantysa zaczyna się od drugiego bitu, gdzie zawsze powinna być liczba (dwójkowa) 1. Jej brak oznacza błędną pracę pamięci lub procesora!

32 Cecha jest pamiętana jako całkowita liczba (dwójkowa) ze znakiem i jest przechowywana w bajcie następującym po bajtach pamięci przechowujących mantysę. Większość współczesnych procesorów operuje na dwu typach liczb rzeczywistych: 4- bajtowe (3 bajty mantysy, 1 bajt cechy), zakres wartości ±1,4 * 10 ±38 z dokładnością do 7 cyfr znaczących. Ta dokładność i zakres wartości wystarcza do większości obliczeń inżynierskich. 8- bajtowe (7 bajtów mantysy, 1 bajt cechy), zakres wartości ±1,4 * 10 ±308 z dokładnością cyfr znaczących. Zastosowania: obliczenia naukowe, technika kosmiczna, jądrowa, itp..

33 Dane tekstowe Teksty pamiętane są jako liczby odpowiadające poszczególnym znakom drukarskim. Używane są jedno- i dwu-bajtowe systemy kodowania tekstów. Typowe: ASCII – American Standard Code for Information Interchange – oparty o słowo 8 bitowe, np. Spacja 32 # 20, 0 (zero) 48 #30 A 65 # 41 a 97 # 61 ASCII zwykły – (7 bitowe) ASCII rozszerzony (8 bitowe) Unicode – rozszerzenie standardowego kodu ASCII – kodowanie znaków na 2B (pierwszy bajt zgodny z ASCII) Ą 0104 ą 0105 Ć 0106 ć 0107, ń 0144 Pozwala kodować teksty większości języków, włącznie z azjatyckimi.

34 Wielkości logiczne Informacja typu „tak” – „nie” Prawda/Fałsz Zwykle kodowana wg. standardu: 0 – Fałsz 1 - Prawda Wystarcza 1 bajt, często, ze względów technicznych wielkości logiczne zapisuje się 2 lub 4 bajtach. Jest to „rozrzutność” z punktu widzenia użycia pamięci ale pozwala to zwiększyć wydajność obliczeń ze względu na konstrukcję nowoczesnych procesoró

35 Zapisywanie sygnałów analogowych w technice cyfrowej (dyskretyzacja )

36 OkresOkres próbkowania Ts to odstęp czasu pomiędzy pobieraniem kolejnych próbek. CzęstotliwośćCzęstotliwość próbkowania to odwrotność okresu próbkowania:. Aby spróbkowany sygnał z postaci cyfrowej dało się przekształcić bez straty informacji z powrotem do postaci analogowej, musi być spełnione twierdzenietwierdzenie Kotielnikowa-ShannonaKotielnikowa-Shannona o próbkowaniu. Mówi ono, że częstotliwość próbkowania nie może być mniejsza niż podwojona szerokość pasma sygnału. Jeśli ten warunek nie jest spełniony, wówczas występuje zjawisko aliasingu.aliasingu ( nieodwracalne zniekształcenie sygnału). Przykład praktycznego wykorzystania Ludzkie ucho słyszy dźwięki do częstotliwości około 20 kHz. Według twierdzeniauchodźwiękikHztwierdzenia Kotielnikowa-ShannonaKotielnikowa-Shannona, częstotliwość zapisu cyfrowego musi być zatem większa niż 40 kHz, aby nie dało się usłyszeć przekłamań (tzw. częstotliwość Nyquista).częstotliwość Nyquista Stąd próbek na sekundę (44,1 kHz) dla każdego kanału, na płycie CD-AudioCD-Audio przyjęto za wartość wystarczającą.

37 Kwantyzacja Jest to drugi (po próbkowaniu) etap procesu przetwarzania sygnału analogowego na cyfrowy. Sygnały analogowe mogą przyjmować dowolne wartości Zapis cyfrowy używa słów o skończonej liczbie bitów, a co z tym idzie narzuca ograniczenia na zbiór wartości zapisywanego sygnału. Dozwolone wartości nazywane są poziomami reprezentacji (cyfrowej) kwantyzacja polega na przypisaniu wartości analogowych do najbliższych (liczbowo) poziomów reprezentacji błąd kwantyzacji - różnica pomiędzy wartością skwantowaną i oryginalną

38 Sygnał analogowy Kwantyzacja Sygnał cyfrowy – mała częstość próbkowania i słaba rozdzielczość Sygnał cyfrowy – zwiększona częstość próbkowania i poprawiona rozdzielczość

39 Rodzaje kwantyzacji: 1)Skalarna – kwantuje się pojedyncze wartości 2) Wektorowa – jednocześnie kwantuje się dwie lub więcej wartości Kw. skalarna może być: a)Równomierna b)Nierównomierna -Równomierna stosuje stałe odległości pomiędzy poziomami reprezentacji -Nierównomierna dostosowuje położenia poziomów do rozkładu prawdopodobieństwa wartości sygnałów analogowych Bardziej dokładne omówienie konwersji A/D można znaleźć np. na stronie: „Próbkowanie teoria i praktyka” - artykuł w Internecie praktyka/ Zawiera przystępny opis problemów związanych z konwersją danych analogowych do postaci zapisu cyfrowego

40 Algorytmy i struktury danych Informacja przechowywana w komputerach jest tylko pewnym wycinkiem świata rzeczywistego – stanowi jego abstrakcyjny model. Abstrakcja oznacza tu ignorowanie tych cech danego rzeczywistego obiektu, które dla rozwiązania danego problemu nie są potrzebne. Jeżeli chcemy rozwiązać problem to musimy zdecydować jakie dane będą przetwarzane i jak będą one przechowywane w komputerze Typy danych: - proste - złożone Proste – (wbudowane) - liczbowe (całkowite, zmiennoprzecinkowe) - znakowe (teksty) - logiczne (prawda, fałsz) …

41 Typy złożone – konglomeraty zmiennych prostych lub innych typów złożonych -Tablice -Słowniki -Zbiory -Rekordy -Klasy -Pliki -Kolejki -Stosy -Drzewa -Tablica - pozwala zapamietać wyłącznie elementy tego samego typu. Tablice zapewniają dostęp swobodny – do każdego elementu dostęp odbywa się w identyczny sposób i można się do nich odwoływać w dowolnej kolejności. Odwołanie się do danego elementu odbywa się poprzez tzw. Indeksowanie (oprócz nazwy tablicy podajemy numer elementu, do którego chcemy się odwołać T[10] := 5 W niektórych językach programowania wymagane jest podanie rozmiaru tablicy i sposobu indeksowania Np. T3: Array[-2..8] of Real T4: Array[1..10] [1..5] [1..6] of Integer

42 Ada: -- definicja typu tablicowego type TableType is array( ) of Integer; -- definicja zmiennej okreslonego typu tablicowego MyTable : TableType; Visual Basic: Dim a(1 to 5,1 to 5) As Double Dim MyIntArray(10) As Integer Dim MySingleArray(3 to 5) As Single C: char my_string[40]; int my_array[] = {1,23,17,4,-5,100}; Java: int [] counts; counts = new int[5]; PHP: $pierwszy_kwartal = array(1 => ’Styczen’, ’Luty’, ’Marzec’); Python: mylist = ["List item 1", 2, 3.14]

43 Słownik: Zbiór obiektów, do których możemy dotrzeć podając tzw klucz – identyfikator (hasło) wskazujące na dany obiekt (wartość). Obiekty w słowniku nie posiadają kolejności. Operacje na słowniku (Python) d = {"key1":"val1", "key2":"val2"} x = d["key2"] d["key3"] = 122 d[42] = "val4„ Rekord Pozwala przechowywać obiekty różnego typu – elementy rekordu to tzw. pola type osoba is record imie: napis; nazwisko: napis; wiek: Integer; end

44 Rekord: Zawiera dane różnego typu definicja type osoba is record imie: napis; nazwisko: napis; wiek: Integer; end użycie o: osoba; wypisz(o.imie); o.wiek := 12;

45 Klasa Oprócz informacji o cechach obiektu zawiera rónież informację o dozwolonych na tym obiekcie działaniach (funkcjach, jakie obiekt może wykonywać) class Samochod: marka: String; pojemnosc: Float; kolor: Color; Jedz(kierunek); StanLicznika(); Stop(); UruchomSilnik(); end

46 Wykorzystanie: x,i: Float; i:=0; myCar = new Samochod(); myCar.marka="Nissan"; myCar.pojemnosc=1.8; myCar.UruchomSilnik(); x=myCar.StanLicznika(); myCar.Jedz("przod"); while(i<10) begin i=myCar.StanLicznika()-x; end myCar.Stop(); Polecenie myCar = new Samochod(); Definiuje obiekt klasy Samochod (operator „new”)

47 Pojęcia związane z klasą Obiekt to konkretna realizacja klasy Dziedziczenie (ang. Inheritance) – pozwala tworzyc obiekty wyspecjalizowane na podstawie obiektów bardziej ogólnych. Nie trzeba definiować całości cech i funkcjonalności a jedynie te, które róznia obiekt specjalizowany od ogólniejszego. pojazd: własnosci (dane): predkosc, połozenie działania: Stój, PoruszajSie pojazdCzterokołowy: taki sam jak typ pojazd oraz dodatkowo własności: iloscDobrychKół działania: SkrecWLewo, SkrecWPrawo wodnosamolot: taki sam jak typ pojazd oraz dodatkowo własnosci: szybkoscToniecia działania: Startuj, Laduj pojazdKosmiczny: własnosci: zapasPowietrza

48 5. pojzadMarsjanski: taki sam jak typ pojazdCzterokołowy oraz taki sam jak typ pojazdKosmiczny oraz własnosci: stanNaładowaniaAkumulatorów działania: RozłózBaterieSłoneczne, ŁadujAkumulatory Abstrakcja (ang. abstraction) Rózne traktowanie tego samego obiektu Samochód–Nissan–srodek transportu Enkapsulacja (ang. Encapsulation) - ukrywanie implementacji, (syn. Hermetyzacja). Obiekt nie może zmieniać stanu wewnętrznego innych obiektów w sposób dowolny – każdy obiekt udostępnia innym tzw. interfejs, który narzuca ograniczenia na współprace pomiędzy obiektami. Np.. obiekt Kontobankowe nie powinien dopuścić by dowolny inny obiekt mogł zmienic pole StanKonta Polimorfizm (ang. Polymorphism) – (wielopostaciowość) operacje na obiektach klas rodzicielskich można przenosić na klasy pochodne.

49 Plik Sekwencyjna struktura, której elementy ustawione są jeden za drugim. Tymi elementami mogą być rekordy, tablice i inne typy złożone. Liczba elementów może być dowolna (ograniczenia może narzucać nośnik pliku). Elementy pliku można dopisywać na końcu pliku, można je pobierać (czytać), można łączyć dwa pliki. Plik można również tworzyć i otwierać (udostępniać do przetwarzania). Kolejka Struktura o nieokreślonym rozmiarze, zwykle złozona z obiektów tego samego typu. Elementy te tworzą ciąg – ważne: początek kolejki (ang. head, głowa) i koniec (ang. Tail, ogon). Kolejka jest obsługiwana – pierwszy element (głowa) jest pierwszym obslugiwanym, nowy trafia zawsze na koniec kolejki stajac się jej nowym ogonem. Elementy obsłużone są usuwane z kolejki. Taka kolejka to tzw. FIFO (First In First Out). Warianty: kolejka priorytetowa (kolejność każdego obiektu w kolejce wynika z przypisanego mu priorytetu. Kolejka cykliczna – pierwszy element ma poprzednika (ogon kolejki)

50 Stos Podobny do kolejki (dowolna liczba elementów), rózni się sposobem obsługi: Ostatni dodany element jest pierwszym obsługiwanym. LIFO – Last In First Out Drzewo Strukture drzewa tworzą: korzeń, węzły, gałęzie i liście. Od korzenia odchodzą węzły pierwszego poziomu, z nimi mogą być połączone węzły drugiego poziomu, itd.. Węzeł, z którego nie odchodzą dalsze węzły to liść. Droga która łączy korzeń z danym liściem to gałąź. Jęzeli od węzła n-tego poziomu odchodzi węzeł (węzły) poziomu n+1szego to mówimy, że węzeł n-ty jest rodzicem węzlą n+1szego, natomiast n+1szy jest jego dzieckiem. Drzewa można wykorzystać np. w algorytmach sortowania. Przykład (wg. P. Fulmańskiego) – zasady: Każdy węzeł przechowuje jedną liczbę, Każdy rodzic może mieć tylko dwójkę dzieci Po lewej stronie każdego węzła wypisujemy wartości mniejsze od liczby w węźle, Po prawej stronie liczby wieksze od przechowywanej w węźle Liczby z drzewa wypisujemy podając najpierw wartości na lewo od węzła, potem z węzła, potem z prawej strony węzła

51 Liczby sortowane: 15,10,17,16,18,4,12,11. Etap 1 Etap 2 Etap 3 Etap 4 Etap / / \ / \ / \ / / \ Etap 6 Etap 7 Etap / \ / \ / \ / / \ / \ / \ / \ / \ / 11

52 Przykłady algorytmów: - algorytmy obliczeniowe obliczanie wartości takich jak: pierwiastki, NWN, NWD, rozwiązania równań

53 Algorytm znajdujący pierwiastki równania kwadratowego (zapis w pseudojęzyku) Czytaj: a,b,c If (a=0) then begin Pisz( „To nie jest równanie kwadratowe”) end else begin D:= b^2-4*a*c if (D < 0) then begin RR := -b/(2*a); IM:= Sqrt(-D)/(2*A); Pisz( „Dwa rozwiązania zespolone:”, „X1 =„, RR,”+i*”,IM, „X2 =„, RR,”-i*”,IM) end else if(D=0) then begin X1 = -b/(*a) Pisz( „X1 = X2 =„, X1) end

54 else begin X1 := (-b+sqrt(D))/(2*a); X2 := (-b-sqrt(D))/(2*a); Pisz( „X1 =„, X1, „X2 =„, X2) end

55 Algorytm sortowania przez wstawianie Tablica A zawiera N nieuporządkowanych liczb For i:=1 to N-1 step 1 do begin for j:=i+1 to N step 1 do if (A[i] < A[j]) then begin w := A[i]; A[i] := A[j]; A[j] = w; end Porządkowanie rosnące czy malejące?

56 Algorytmy iteracyjne i rekurencyjne Łac. Iteratio – powtarzanie algorytmy ieracyjne powtarzają pewien zestaw instrukcji Obiekt jest rekurencyjny jeżeli występuje we własnej definicji (powołuje się na siebie) N! = 1*2*3*….*N, 0!= 1 Iteracyjnie: Function Silnia(N) begin i:=0; s:=1; while (i < N) do begin i := i+1 s = s*i; end return(s); end

57 Silnia, wersja rekurencyjna Function SilniaR(N) begin if (n=0) then begin return (1); end return n*SilniaR(n-1); end

58 Ciag Fibonacciego, dla n > 1, Fib n := Fib n-1 + Fib n-2 ; Fib 1 = Fib 0 = 1 Przykład bardzo nieskutecznej rekursji function FibR(n) begin if (n=0 or n=1) then begin return (1); end return (FibR(n-1)+FibR(n-2)); end

59 Wersja iteracyjna function FibIt(n) begin i := 1; # licznik q := 0; # zmienna robocza x := 1; # wyraz n-1 y := 1; # wyraz n-2 while (i

60 Algorytmy wyszukiwania: Dwa przypadki: 1)Wyszukujemy liczbę w zbiorze nieuporządkowanym – wyszukiwanie liniowe 2)Wyszukujemy liczbę w zbiorze uporządkowanym (rosnąco lub malejąco) - przeszukiwanie liniowe lub - przeszukiwanie połówkowe (binarne) – bardziej wydajne

61 Algorytm szukania połówkowego Dla tablicy uporządkowanej rosnąco (Zapis graficzny)

62 Przykład (wg. T.Lubiński, Niech będzie dana tablica 5-elementowa, a = {1, 2, 4, 6, 7}. Poszukajmy w niej element x = 2. -Na początku l = 1, p = 5. -Wybieramy element środkowy s = (1 + 5) / 2 = 3. -Sprawdzamy czy a[3] jest równe 2? Nie, element ten jest równy 4,http://www.algorytm.org/ jest on większy od 2 zatem modyfikujemy p = s - 1 = = 2. -Wybieramy element środkowy s = (1 + 2) / 2 = 1. Sprawdzamy czy a[1] jest równe 2? Nie, element ten jest równy 1, jest on mniejszy od 2 zatem modyfikujemy l = s + 1 = = 2. -Wybieramy element środkowy s = (2 + 2) / 2 = 2. Sprawdzamy czy a[2] jest równe 2? Tak, znaleźliśmy szukany element pod indeksem 2. Poszukajmy teraz element x = 5. Na początku l = 1, p = 5. -Wybieramy element środkowy s = (1 + 5) / 2 = 3. -Sprawdzamy czy a[3] jest równe 5? Nie, element ten jest równy 4, jest on mniejszy od 5 zatem modyfikujemy l = s + 1 = = 4. -Wybieramy element środkowy s = (4 + 5) / 2 = 4. Sprawdzamy czy a[4] jest równe 5? Nie, element ten jest równy 6, jest on większy od 5 zatem modyfikujemy p = s - 1 = 3. -W tym momencie l jest większe od p, zatem kończymy wyszukiwanie. -Elementu o wartości 5 nie ma w przeszukiwanej tablicy.

63 Złożoność obliczeniowa algorytmu Miara ilości zasobów (czas, liczba operacji, pamięć) jakie potrzebuje algorytm Zwykle jest funkcją rozmiaru danych wejściowych (nie zawsze!) Np. obliczanie wartości wyznacznika z macierzy NxN metodą rozwijania wg. dopełnień algebraicznych ma złożonośc N! Tę sama wartośc można obliczyć metodą rozkładu macierzy na iloczyn dwóch macierzy trójkątnych (np.. metoda Crouta) ze złożonością N 3 Złożoność czasowa – miara jest zwykle liczba operacji a nie rzeczywisty czas Złożoność pamięciowa – miara ilości pamieci niezbędnej do realizacji zadania

64 Przetwarzanie sekwencyjne i równoległe Przetwarzanie sekwencyjne – wykonywanie instrukcji programów kolejno jedna za drugą. Przetwarzanie współbieżne – wykonywanie instrukcji programów równocześnie na tym samym procesorze (z podziałem czasu procesora). Przetwarzanie równoległe – wykonywanie instrukcji programów równocześnie na różnych procesorach

65 Praktyczna realizacja algorytmu – jezyki programowania 1)Pierwsze komputery (lata 40te i pierwsza połowa lat pięćdziesiątych ubiegłego wieku były programowane bezpośrednio w kodach dwójkowych – każdy rozkaz procesora to liczba. 2) Pierwsza połowa lat pięćdziesiątych – assembler rozkazy procesora pisane przez człowieka w formie skrótów poleceń np. add (dodaj), mult (mnóż), div (dziel) itp. 3) Lata 54-57, firma IBM wprowadza język wysokiego poziomu FORTRAN (FORmula TRANslator) 1960 – FORTRAN IV 1966 – FORTRAN 66 ….. FORTRAN 2008

66 Język wysokiego poziomu uniezależniał kod programu od budowy komputera, ten sam program mógł pracować na maszynach różnych firm czy na nowych modelach komputerów. Człowiek pisze kod (program) w języku wysokiego poziomu jako tekst, język jest zbliżony do języka naturalnego (mówionego). Jak każdy język ma alfabet, słownik, reguły gramatyki, składni i ortografii. Na komputerze pracuje program tłumaczący, który czyta napisany przez człowieka program i tłumaczy go na jezyk dwójkowych rozkazów procesora. Program tłumaczący (translator lub interpreter) jest tworzony dla konkretnego modelu komputera. Translator czyta całą treść programu, analizuje poprawność po czym tworzy kod dwójkowy, zwykle optymalizując organizację kodu. Dwójkowy kod może być później wielokrotnie wykorzystywany. Interpreter czyta pojedyncze rozkazy, analizuje je i od razu je wykonuje. Ponowne wykonanie programu oznacza rozpoczęcie całego procesu analizy kodu od początku.

67 W ciągu 60 ostatnich lat pojawiło się kilkaset różnych języków programowania. Większość z nich nie jest powszechnie używana, niektóre były intensywnie rozwijane przez kilka czy kilkanaście lat po czym zniknęły. Języki rozpowszechnione to np. C, C++, FORTRAN, Lisp, COBOL, Python, Ruby, Pascal Ważne języki z grupy „wymarłych” to np. Algol 60 czy PL/1, Algol 68 Do dziś informatycy opisują wiele algorytmów przy użyciu pseudojęzyka wzorowanego na Algolu 60, mimo, że translatory tego języka zniknęły z powszechnego użytku w pierwszej połowie lat siedemdziesiątych.

68 Przykłady programów w języku wysokiego poziomu (Fortran 90) program p1 ! ! Program oblicza pole powierzchni i obwód koła o promieniu r ! real r, pole, obwod, pi pi = 4*atan(1.0) ! Obliczamy i zapamietujemy pi write (*,*) ‘ wpisz promien kola’ ! Prosimy o dane read(*,*) r ! Czytamy dane pole = pi*r**2! Wykonujemy obwod = 2*r*pi! obliczenia ! Wyswietlamy wyniki write(*,*) ‘ pole kola =‘, pole write(*,*) ‘ jego obwod =‘, obwod end


Pobierz ppt "Informatyka PWSZ Tarnów. Cele kursu Ćwiczenia – zapewnić umiejętności potrzebne do przetrwania studiów Wykład – Prezentacja najbardziej istotnych zagadnień."

Podobne prezentacje


Reklamy Google