Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Dziwny jest ten świat… Paradoksy mechaniki kwantowej a filozofia Andrzej Łukasik Zakład Ontologii i Teorii Poznania Instytut Filozofii UMCS

Podobne prezentacje


Prezentacja na temat: "Dziwny jest ten świat… Paradoksy mechaniki kwantowej a filozofia Andrzej Łukasik Zakład Ontologii i Teorii Poznania Instytut Filozofii UMCS"— Zapis prezentacji:

1 Dziwny jest ten świat… Paradoksy mechaniki kwantowej a filozofia Andrzej Łukasik Zakład Ontologii i Teorii Poznania Instytut Filozofii UMCS

2 Mechanika kwantowa a zdrowy rozsądek „Zgodnie z fizyką klasyczną i zdrowym rozsądkiem istnieje obiektywny świat zewnętrzny. Świat ten ewoluuje w czasie w sposób deterministyczny, w pełni określony ściśle sformułowanymi równaniami matematycznymi. Jest tak zarówno w teoriach Maxwella i Einsteina, jak i we wcześniejszej dynamice Newtona. Rzeczywistość fizyczna istnieje niezależnie od nas, konkretna zaś postać ‘istnienia’ klasycznego świata nie zależy od tego, w jaki sposób go obserwujemy”. (Roger Penrose, Nowy umysł cesarza, 254) Filozofia – realizm naukowy Problem: czy mechanika kwantowa jest zgodna z realizmem?

3 Osobliwości mikroświata Czy jedna niepodzielna cząstka może się znajdować w dwóch miejscach równocześnie? Czy kot może być jednocześnie żywy i martwy? Czy to, co robimy teraz, może mieć wpływ na przeszłość?

4 Eksperyment z dwiema szczelinami „Ten jeden eksperyment zawiera w sobie wszystkie tajemnice mechaniki kwantowej. Jego analiza pozwoli nam na zapoznanie się ze wszystkimi osobliwościami i paradoksami natury. Każdy inny problem z dziedziny teorii kwantów można zawsze wyjaśnić, wracając do tego doświadczenia”. (Richard P. Feynman, Charakter praw fizycznych, s. 138)

5 Klasyczne cząstki N1 – liczba cząstek przechodzących przez szczelinę 1 N2 – liczba cząstek przechodzących przez szczelinę 2 N12 – prawdopodobieństwo = średnia liczba cząstek trafiających w dane miejsce ekranu, gdy otwarte są szczeliny 1 i 2 N12 = N1 + N2 (brak interferencji) Źródło grafiki:

6 Klasyczne fale H1 – amplituda fali przechodzącej przez szczelinę 1 H2 – amplituda fali przechodzącej przez szczelinę 2 H12 – amplituda fali (obydwie szczeliny otwarte) H12 = H1 + H2 Natężenie fali: I12 = (H12) 2 = (H1 + H2) 2 (interferencja), I1 = (H1) 2 I2 = (H2) 2

7 Cząstki kwantowe Rezultaty eksperymentu: Elektrony trafiają w detektor pojedynczo Detektor rejestruje zawsze taką samą, dyskretną wartość (cały elektron lub nic) Nigdy dwa detektory nie rejestrują jednego elektronu Ale! N12 ≠ N1 + N2 N12 = (a1 + a2) 2 – prawdopodobieństwo trafienia elektronu (fotonu) w dany punkt ekranu (interferencja! – jak w przypadku fal) a – amplituda prawdopodobieństwa

8 „Podsumowując, można powiedzieć, że elektrony docierają do detektorów w całości, tak jak pociski, ale prawdopodobieństwo rejestracji elektronów jest określone takim wzorem jak natężenie fali. W tym sensie elektron zachowuje się jednocześnie jak cząstka i jak fala”. (Feynman, Charakter praw fizycznych147) Elektrony rejestrowane są jako niepodzielne cząstki Twierdzenie „elektron przechodzi albo przez szczelinę 1 albo przez szczelinę 2” jest FAŁSZYWE! „jest rzeczą niemożliwą tak ustawić światła, aby stwierdzić, przez którą szczelinę przeleciał elektron, nie zaburzając go na tyle, że znika obraz interferencyjny” (Feynman, Charakter praw fizycznych 151) „[…] nikt nie rozumie mechaniki kwantowej”. (Feynman, Charakter praw fizycznych 137)

9 Paradoks kota Schrödingera Erwin Schrödinger (1935): cel eksperymentu – wykazanie absurdalności kopenhaskiej interpretacji QM kot + atom pierwiastka radioaktywnego +detektor + fiolka z cyjankiem prawdopodobieństwo rozpadu pierwiastka w danym czasie p = ½ dopóki nie dokonamy pomiaru układ znajduje się w superpozycji stanów: pomiar: redukcja wektora stanu – obserwujemy kota żywego albo martwego

10 Przyjaciel Wignera Interpretacja kopenhaska: QM to (jedynie) schemat matematyczny, służący do przewidywania rezultatów pomiarów przez zewnętrznego w stosunku do układu obserwatora przed wykonaniem pomiaru układ jest w stanie superpozycji Czy kot nie wie, czy jest żywy, czy martwy… Przyjaciel Wignera: jeśli w pudle zamiast kota umieścić fizyka… fizyk z pewnością będzie świadom tego, że był żywy przed pomiarem, a nie w stanie superpozycji…

11 Many-Worlds Interpretation Hugh Everett III (1957), Bryce DeWitt, David Deutsch kosmologia kwantowa – zastosowanie QM do całego wszechświata: pojęcie zewnętrznego obserwatora (przyrządu pomiarowego) traci sens! eliminacja rozróżnienia klasyczny przyrząd – kwantowy obiekt, traktowanie każdego systemu fizycznego jako kwantowomechanicznego — zarówno badanego mikroobiektu, przyrządu pomiarowego, jak i wszechświata. w procesie pomiaru realizują się wszystkie możliwości, ale każda w innym świecie proces pomiaru prowadzi do rozszczepienia wszechświata (i obserwatora) na wiele równie realnych wszechświatów, które nie oddziałują ze sobą

12 Participatory Universe John von Neumann (1932), London, Bauer, Wigner, Wheeler CM redukuje się do QM przyrządy pomiarowe dają się opisać w ramach mechaniki kwantowej — jako bardziej podstawowej i ogólniejszej teorii można by przywrócić obiektywistyczne pojmowanie Ψ. ale... jeśli przyrząd pomiarowy podlega prawom QM, to stany przyrządu można superponować…, aby wyznaczyć stan przyrządu pomiarowego trzeba by wprowadzić inny przyrząd itd. ad infinitum… … proces pomiaru nie mógłby być zakończony bez udziału jakiegoś dodatkowego czynnika redukcji wektora stanu dokonuje… akt świadomości obserwatora

13 Interferencja i superpozycja stanów jeśli nie ma zwierciadła półprzepuszczalnego BS2, fotony docierają do obydwu detektorów z pdp = ½ (Bohr: obserwujemy aspekt korpuskularny – zasada komplementarności) umieszczenie BS2 powoduje, że wskutek interferencji fotony docierają tylko do jednego detektora (Bohr: obserwujemy aspekt falowy – zasada komplementarności) zachodzi interferencja – foton nie porusza się po drodze 1 albo po drodze 2 pojedynczy foton porusza się dwiema różnymi drogami równocześnie!

14 Eksperyment z opóźnionym wyborem (John Archibald Wheeler) zwierciadło BS2 umieszczamy (albo nie) na podstawie świadomej decyzji (albo np. rzutu monetą) „w ostatniej chwili”, tzn. już po tym, jak foton oddziaływał z BS1 (i… „wybrał” drogę 1 lub 2) w zależności od tego czy umieścimy zwierciadło BS2, czy też nie umieścimy na drodze fotonu w chwili t, naszą decyzją wpływamy na zachowanie fotonu w przeszłości!

15 Kosmiczna wersja eksperymentu Wheelera nasze decyzje „w teraźniejszości” wpływają [?] na tor światła sprzed kilku miliardów lat… „żadne elementarne zjawisko kwantowe nie jest zjawiskiem, jeśli nie jest zarejestrowane” (John Archibald Wheeler)

16 Paradoks Einsteina, Podolskiego i Rosena (EPR) Lokalność: to, co się dzieje w pewnym obszarze przestrzeni nie może mieć natychmiastowego wpływu na to, co się dzieje w innym, odległym obszarze przestrzeni [STW: c = const; potoczne myślenie] Einstein (1935): pomiar spinu cząstki 1 pozwala przewidzieć z całkowitą pewnością spin cząstki 2 bez żadnego oddziaływania, zatem obydwie składowe spinu są obiektywnie realne – niezgodność z QM albo QM jest teorią niekompletną, albo mamy do czynienia z „upiornym działaniem na odległość” [nielokalność]

17 Nierówność Bella John Stewart Bell (1964) – dowód matematycznej nierówności dotyczącej korelacji spinowych, która powinna być spełniona, gdyby był słuszny wniosek Einsteina, że QM jest niekompletna założenia: realizm (obiekty kwantowe posiadają własności niezależnie od pomiarów) lokalność (nie ma natychmiastowych oddziaływań) Twierdzenie Bella nie jest związane z jakąś konkretną własnością cząstek (np. spin), ma znaczenie ogólnie i nie zależy od wyboru cząstek ani charakteru łączących je oddziaływań; dotyczy ono logicznych reguł, jakie obowiązują w każdym procesie pomiaru. Taką regułą jest na przykład stwierdzenie, że liczba rudych mieszkańców Polski nie może być większa niż liczba rudych mężczyzn plus liczba wszystkich kobiet bez względu na kolor włosów.

18 Doświadczenia Aspecta i stany splątane Alain Aspect (1982) – empiryczna falsyfikacja nierówności Bella mierzono polaryzację fotonów wyemitowanych podczas przejścia między poziomami energetycznymi atomu wapnia, wzbudzonych światłem laserów (jest to wzbudzenie dwufotonowe, które może się rozpaść tylko przez emisję dwóch fotonów) cząstki, które kiedyś oddziaływały ze sobą, pozostają w jakiś sposób częściami jednego systemu nawet wówczas, gdy obecnie dzieli je znaczna odległość przestrzenna


Pobierz ppt "Dziwny jest ten świat… Paradoksy mechaniki kwantowej a filozofia Andrzej Łukasik Zakład Ontologii i Teorii Poznania Instytut Filozofii UMCS"

Podobne prezentacje


Reklamy Google