Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Wstęp do metod numerycznych Wykład 1 Błędy obliczeń numerycznych dr inż. Wojciech Bieniecki Instytut Matematyki i Informatyki

Podobne prezentacje


Prezentacja na temat: "Wstęp do metod numerycznych Wykład 1 Błędy obliczeń numerycznych dr inż. Wojciech Bieniecki Instytut Matematyki i Informatyki"— Zapis prezentacji:

1 Wstęp do metod numerycznych Wykład 1 Błędy obliczeń numerycznych dr inż. Wojciech Bieniecki Instytut Matematyki i Informatyki 1

2 Literatura 2 Teresa Guziak, Anna Kamińska, Beata Pańczyk, Jan Sikora: Metody numeryczne w elektrotecnice, Lublin 1998 Fortuna Z., Macukow B., Wąsowski J. - Metody numeryczne, WNT 2009 William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling Numerical Recipes in C: The Art of Scientific Computing. Dostępne on-line

3 Definicja 3 METODY NUMERYCZNE dział matematyki stosowanej zajmujący się opracowywaniem i badaniem metod przybliżonego rozwiązywania problemów obliczeniowych w modelach matematycznych innych dziedzin nauki, np. fizyki, ekonomii, medycyny i oczywiście informatyki. Klasyczne metody numeryczne analiza bledów zaokrągleń interpolacja aproksymacja całkowanie i różniczkowanie numeryczne rozwiązywanie równań nieliniowych rozwiązywanie układów równań liniowych obliczanie wartości i wektorów własnych Rozwiązywanie zagadnień dla równań różniczkowych zwyczajnych i cząstkowych przyspieszanie/udokładnianie metod

4 Przykłady zastosowań 4 medycyna – tomografia komputerowa, opracowywanie nowych leków biologia - badanie ekosystemów, modelowanie układu immunologicznego inżynieria - przemysł samochodowy i lotniczy, loty kosmiczne informatyka - konstruowanie nowych procesorów, grafika komputerowa, optymalizacja funkcjonowania sieci komputerowych, modelowanie i symulacja ekonomia - optymalizacja parametrów makroekonomicznych, wybór opcji na giełdzie, kryminologia - rozpoznawanie odcisków palców, inne - prognoza pogody, cyfrowa technologia audio-video, wojsko - tajne/poufne.

5 Błędy obliczeń numerycznych 5 Przez zadanie numeryczne rozumiemy jasny i jednoznaczny opis powiązania funkcjonalnego między danymi wejściowymi (zmienne niezależne) i danymi wyjściowymi (szukanymi wynikami). Algorytm dla danego zadania numerycznego jest z definicji pełnym opisem poprawnie określonych operacji przekształcających dopuszczalne dane wejściowe na dane wyjściowe. „Operacje” oznaczają tu działania arytmetyczne i logiczne. Dla danego zadania numerycznego można rozważać wiele różnych algorytmów. Algorytmy te mogą dawać wyniki o bardzo różnej dokładności. Poniższy przykład pokaże, jak błędy zaokrągleń mogą całkowicie zniekształcić wynik obliczeń, jeśli wykonuje się je według złego algorytmu.

6 Przykład 6 Obliczyć dla n = 0,1,..,15 całki: Zauważmy, że: Otrzymujemy wobec tego wzór rekurencyjny: na podstawie którego zbudujemy dwa algorytmy.

7 Algorytm 1 7 Korzystając z wzoru obliczamy: Przyjmując, obliczamy kolejno: (wynik błędny)

8 Algorytm 1 8 Powodem otrzymania takiego wyniku jest to, że błąd zaokrąglenia  wartości y0 jest mnożony przez -5 przy obliczaniu y 1. Tak więc wartość y 1 jest obarczona błędem -5 . Ten błąd tworzy błąd 25  w y 2 itd. Nakładają się na to błędy zaokrąglenia popełniane w kolejnych krokach obliczeń, mające jednak stosunkowo małe znaczenie. Podstawiając y 0 =ln6-ln5 popełniamy mniejszy błąd zaokrąglenia, który także powoduje duże zniekształcenie wyniku obliczeń y i dla i>16 Oczywiście otrzymywane wyniki zależą także od precyzji, z jaką przeprowadzano obliczenia.

9 Algorytm 2 9

10 10

11 Źródła błędów 11 Do źródeł błędów można zaliczyć: 1) Błędy danych wejściowych (gdy wykorzystujemy dane zaokrąglone, pochodzące np. z wcześniejszych obliczeń). 2) Błędy zaokrągleń w czasie obliczeń (związane z odpowiednią reprezentacją liczby). 3) Błędy obcięcia (gdy proces obliczania granicy jest przerywany przed osiągnięciem wartości granicznej - np. ograniczenie szeregu nieskończonego do skończonej liczby składników, aproksymacja pochodnej za pomocą ilorazu różnicowego). 4) Uproszczenie modelu matematycznego (przyjęcie założeń upraszczających). 5) Błędy programisty.

12 Błędy względne i bezwzględne 12

13 Podstawowe pojęcia szacowania błędów 13

14 Przykład

15 Przykład

16 Przykład

17 Przykład

18 Algorytm numerycznie stabilny i poprawny 18

19 Algorytm numerycznie stabilny i poprawny 19

20 Algorytm numerycznie stabilny i poprawny 20

21 Reprezentacja stałopozycyjna i zmiennopozycyjna 21

22 Reprezentacja stałopozycyjna i zmiennopozycyjna 22

23 Reprezentacja stałopozycyjna i zmiennopozycyjna 23

24 Reprezentacja stałopozycyjna i zmiennopozycyjna 24

25 Przykład

26 Przykład

27 Przykład

28 Epsilon maszynowy 28 Epsilon maszynowy ε m jest to graniczna wartość błędu względnego przybliżenia zmiennoprzecinkowego. Praktycznie: dane reprezentowane w komputerze nie mogą być pamiętane z dokładnością większą niż ε m. Intuicyjnie: 1+ ε m jest najmniejszą liczbą większą od 1, którą komputer potrafi odrożnić od 1. Ponadto rd (x) = x (1+δ) δ≤ ε


Pobierz ppt "Wstęp do metod numerycznych Wykład 1 Błędy obliczeń numerycznych dr inż. Wojciech Bieniecki Instytut Matematyki i Informatyki"

Podobne prezentacje


Reklamy Google