Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

D. Ciołek BADANIA OPERACYJNE – wykład 2 BADANIA OPERACYJNE Wykład 2: Przykłady modeli liniowych. Metoda simpleks dr Dorota Ciołek Katedra Ekonometrii Wydział.

Podobne prezentacje


Prezentacja na temat: "D. Ciołek BADANIA OPERACYJNE – wykład 2 BADANIA OPERACYJNE Wykład 2: Przykłady modeli liniowych. Metoda simpleks dr Dorota Ciołek Katedra Ekonometrii Wydział."— Zapis prezentacji:

1 D. Ciołek BADANIA OPERACYJNE – wykład 2 BADANIA OPERACYJNE Wykład 2: Przykłady modeli liniowych. Metoda simpleks dr Dorota Ciołek Katedra Ekonometrii Wydział Zarządzania UG

2 D. Ciołek BADANIA OPERACYJNE – wykład 2 Przykłady liniowych modeli decyzyjnych 1) Programowanie asortymentu produkcji; 2) Zagadnienie diety (mieszanki); 3) Zagadnienie cięcia (rozkroju); 4) Zagadnienie transportowe; 5) Zagadnienie przydziału.

3 D. Ciołek BADANIA OPERACYJNE – wykład 2 Zagadnienie rozkroju Fabryka celulozy i papieru otrzymała zamówienie na wykonanie 150 zwojów papieru o szerokości 105 cm, 200 zwojów papieru o szerokości 75 cm i 150 zwojów papieru o szerokości 35 cm. Jako surowiec zostanie użyty papier zrolowany o szerokości 2 m. W jaki sposób fabryka ma zrealizować zamówienia, przy założeniu, że w procesie cięcia papieru odpad będzie jak najmniejszy?

4 D. Ciołek BADANIA OPERACYJNE – wykład 2 Przykłady liniowych modeli decyzyjnych 4) Zagadnienie transportowe Na rynku znajduje się m dostawców pewnego towaru i n odbiorców tego towaru. Dostawca D 1 może zaoferować a 1 ilości danego produktu, dostawca D 2 dysponuje ilością a 2 tego produktu, …, dostawca D m ma a m ilości produktu. Poszczególni odbiorcy zgłaszają zapotrzebowanie na b 1, b 2,…, b n ilości produktu. Koszty jednostkowe transportu od i-tego dostawcy do j-tego odbiorcy wynoszą c ij, zaś wielkość przewiezionego ładunku określa zmienna X ij. Zakładamy, że łączna wielkość towaru jakim dysponują dostawcy jest równa łącznemu zgłaszanemu zapotrzebowaniu – Zagadnienie zbilansowane. Ustalić sposób przewożenia towaru, tak aby łączny koszt transportu był jak najmniejszy.

5 D. Ciołek BADANIA OPERACYJNE – wykład 2 Przykłady liniowych modeli decyzyjnych 4) Zagadnienie transportowe

6 D. Ciołek BADANIA OPERACYJNE – wykład 2 Zagadnienie transportowe Cztery piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z dwóch magazynów znajdujących się na peryferiach. Zasoby tego surowca wynoszą: w magazynie A – 130 ton, w magazynie B – 200 ton, a zapotrzebowanie piekarni wynosi odpowiednio 80, 120, 70 i 60. Koszty jednostkowe dostawy mąki do piekarni zależą tylko od odległości, które podano w tablicy. Magazyny Piekarnie 1234 ABAB

7 D. Ciołek BADANIA OPERACYJNE – wykład 2 Przykłady liniowych modeli decyzyjnych 5) Zagadnienie przydziału Zakład zatrudnia n pracowników, którzy maja pracować na n stanowiskach pracy. Znana jest wydajność pracy i-tego pracownika na j-tym stanowisku pracy. Zakłada się, że każdy pracownik może pracować tylko na jednym stanowisku pracy oraz, ze na jednym stanowisku pracy może pracować tylko jeden pracownik. Ustalić taki plan przydziału pracowników do stanowisk pracy, aby łączny efekt ich zatrudnienia był maksymalny.

8 D. Ciołek BADANIA OPERACYJNE – wykład 2 Przykłady liniowych modeli decyzyjnych 5) Zagadnienie przydziału

9 D. Ciołek BADANIA OPERACYJNE – wykład 2 Zagadnienie przydziału (Ignasiak E. (red.), (1996), Badania operacyjne.) Na wydziale obróbki mechanicznej działają cztery maszyny i czterech obsługujących je robotników. Znana jest wydajność każdego robotnika na poszczególnych stanowiskach. Wydajność tę określa liczba detali, które dany robotnik może wykonać na danej maszynie w ciągu jednej godziny. Przedstawiono ją w tablicy: Należy zapisać matematyczny model zagadnienia oraz przy pomocy algorytmu węgierskiego ustalić taki przydział robotników do poszczególnych stanowisk, aby łączna wydajność całego zespołu była maksymalna. w ij R1 R1 R2 R2 R3 R3 R4 R4 M16784 M M M

10 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks Metoda simpleks – uniwersalna, pozwala na znalezienie rozwiązania optymalnego dla każdego liniowego modelu decyzyjnego, które ma rozwiązanie. Sekwencyjne ukierunkowane sprawdzanie rozwiązań. Załóżmy, że mamy LMD z n zmiennymi decyzyjnymi i m warunkami ograniczającymi. Można rozpocząć rozwiązywanie modelu metodą simpleks: gdy w macierzy współczynników z warunków ograniczających A, znajduje się podmacierz kwadratowa o wymiarze m, której kolumny są liniowo niezależne (macierz jednostkowa). Jeżeli w macierz A znajduje się taka macierz możemy wskazać rozwiązanie bazowe.

11 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks Rozpoczynamy od modelu w postaci kanonicznej. (MAX)

12 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks Rozpoczynamy od modelu w postaci kanonicznej. (MAX) Macierz A:

13 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks Rozpoczynamy od modelu w postaci kanonicznej. (MAX) Macierz A:

14 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks Zmienne, przy których znajduje się macierz jednostkowa (zmienne bazowe) przyjmują niezerowe wartości w danym rozwiązaniu bazowym. Zmienne niebazowe są równe zero. Wartości zmiennych bazowych w rozwiązaniu początkowym równe są elementom wektora wyrazów wolnych b. Zdegenerowane rozwiązanie bazowe – chociaż jedna zmienna bazowa jest równa zero. Wówczas mogą nastąpić tzw. martwe kroki – przechodzimy od jednego rozwiązania do drugiego związanych z tym samym punktem, wartość funkcji celu się nie zmienia.

15 D. Ciołek BADANIA OPERACYJNE – wykład 2 Tablica simpleks (max – bez sztucznej bazy) x1x1 x2x2 …xnxn s1s1 …smsm baza cjcj c1c1 c2c2 …cncn 0…0bjbj s1s2…sms1s2…sm 00…000…0 a 11 a 21 … a m1 a 11 a 21 … a m1 …………………… a 11 a 21 … a m1 10…010…0 …………………… 00…100…1 b1b2…bmb1b2…bm c j - z j 0 Big M

16 D. Ciołek BADANIA OPERACYJNE – wykład 2 Tablica simpleks (max – bez sztucznej bazy) x1x1 x2x2 …xnxn s1s1 …smsm baza cjcj c1c1 c2c2 …cncn 0…0bjbj s1s2…sms1s2…sm 00…000…0 a 11 a 21 … a m1 a 11 a 21 … a m1 …………………… a 11 a 21 … a m1 10…010…0 …………………… 00…100…1 b1b2…bmb1b2…bm c j - z j 0 Big M

17 D. Ciołek BADANIA OPERACYJNE – wykład 2 Tablica simpleks (max – bez sztucznej bazy) x1x1 x2x2 …xnxn s1s1 …smsm baza cjcj c1c1 c2c2 …cncn 0…0bjbj s1s2…sms1s2…sm 00…000…0 a 11 a 21 … a m1 a 11 a 21 … a m1 …………………… a 11 a 21 … a m1 10…010…0 …………………… 00…100…1 b1b2…bmb1b2…bm c j - z j 0 Big M

18 D. Ciołek BADANIA OPERACYJNE – wykład 2 Tablica simpleks (max – bez sztucznej bazy) x1x1 x2x2 …xnxn s1s1 …smsm baza cjcj c1c1 c2c2 …cncn 0…0bjbj s1s2…sms1s2…sm 00…000…0 a 11 a 21 … a m1 a 11 a 21 … a m1 …………………… a 11 a 21 … a m1 10…010…0 …………………… 00…100…1 b1b2…bmb1b2…bm c j - z j 0 Big M

19 D. Ciołek BADANIA OPERACYJNE – wykład 2 Metody simpleks (tablicowo) Początkowa tablica simpleks zawiera pierwsze rozwiązanie bazowe. Każda zmienna w danym rozwiązaniu ma swój wskaźnik optymalizacyjny (c j – z j ):  Dla zmiennych bazowych jest on równy zero.  Dla zmiennych niebazowych określa jak się zmieni wartość funkcji celu, jeżeli dana zmienna przyjmie wartość jeden.

20 D. Ciołek BADANIA OPERACYJNE – wykład 2 Tablica simpleks (max – bez sztucznej bazy) x1x1 x2x2 …xnxn s1s1 …smsm baza cjcj c1c1 c2c2 …cncn 0…0bjbj s1s2…sms1s2…sm 00…000…0 a 11 a 21 … a m1 a 11 a 21 … a m1 …………………… a 11 a 21 … a m1 10…010…0 …………………… 00…100…1 b1b2…bmb1b2…bm c j - z j c1c1 c2c2 …cncn 0…00 Big M

21 D. Ciołek BADANIA OPERACYJNE – wykład 2 Metody simpleks (tablicowo) Początkowa tablica simpleks zawiera pierwsze rozwiązanie bazowe. Każda zmienna w danym rozwiązaniu ma swój wskaźnik optymalizacyjny (c j – z j ):  Dla zmiennych bazowych jest on równy zero.  Dla zmiennych niebazowych określa jak się zmieni wartość funkcji celu, jeżeli dana zmienna przyjmie wartość jeden. Kryterium optymalności: Dane rozwiązanie bazowe jest optymalne, jeżeli wskaźniki optymalizacyjne dla zmiennych niebazowych są:  niedodatnie – dla maksymalizacji,  nieujemne – dla minimalizacji.

22 D. Ciołek BADANIA OPERACYJNE – wykład 2 Metody simpleks (tablicowo) Jeżeli w początkowej tablicy simpleks nie jest zawarte rozwiązanie optymalne należy przejść do kolejnej tablicy (kolejnego wierzchołka). Kryterium wyboru zmiennej wprowadzanej do bazy:  Dla maksymalizacji do bazy wejdzie zmienna niebazowa, dla której współczynnik optymalizacyjny ma największą wartość dodatnią.  Dla minimalizacji do bazy wejdzie zmienna niebazowa, dla której współczynnik optymalizacyjny ma największą wartość ujemną.

23 D. Ciołek BADANIA OPERACYJNE – wykład 2 Metody simpleks (tablicowo) Reguła wyboru zmiennej usuwanej z bazy: Elementy kolumny b j dzielimy przez odpowiednie elementy kolumny przy zmiennej wchodzącej do bazy. Zmienna wejdzie na to miejsce w bazie, gdzie iloraz będzie najmniejszy, po warunkiem, że jest większy od zera. (Brak ilorazów dodatnich oznacza, że zagadnienie nie ma rozwiązania optymalnego – należy przerwać obliczenia). Wyznaczanie nowej tablicy simpleksowej:  Przekształcenia Gaussa,  Przekształcenia Jordana.

24 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks – min (Sztuczna baza) Model w postaci kanonicznej. (MIN)

25 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks – min (Sztuczna baza) Model w postaci kanonicznej. (MIN)

26 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks – min (Sztuczna baza) Model w postaci kanonicznej. (MIN)

27 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks – min (Sztuczna baza) Model w postaci kanonicznej. (MIN)

28 D. Ciołek BADANIA OPERACYJNE – wykład 2 Idea metody simpleks – min (Sztuczna baza) Zmienna sztuczna A wprowadzana jest zawsze wtedy, gdy zmienna dodatkowa w warunku ograniczającym ma znak ujemny:  typowe warunki w zagadnieniu minimalizacji,  nietypowe warunki w zagadnienie maksymalizacji. Waga w funkcji celu przy zmiennej sztucznej:  w minimalizacji + M,  w maksymalizacji – M.


Pobierz ppt "D. Ciołek BADANIA OPERACYJNE – wykład 2 BADANIA OPERACYJNE Wykład 2: Przykłady modeli liniowych. Metoda simpleks dr Dorota Ciołek Katedra Ekonometrii Wydział."

Podobne prezentacje


Reklamy Google