Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe:

Podobne prezentacje


Prezentacja na temat: "Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe:"— Zapis prezentacji:

1

2 Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe: Konsultacje Egzamin poniedziałek8:15-10:00AZ, 350AB czwartek8:15-10:00AZ, 350AB poniedziałek15:15-17:00AZ, 350AB środa13:15-14:00

3 Regulamin (1) 1. Warunkiem dopuszczenia do egzaminu jest zaliczenie ćwiczeń rachunkowych. 2. Ocena z Ćwiczeń - bdb zwalnia z egzaminu i przepisywana jest jako egzaminacyjna. 3. Egzamin składa się z dwugodzinnej części pisemnej, na którą składa się w połowie materiał z Termodynamiki i w połowie z Kinetyki i Elektrochemii oraz ustnej (zwykle następnego dnia). 4. Warunkiem zaliczenia egzaminu jest niezależne zaliczenie obu jego części. Można to zrobić w różnych terminach (np. zaliczona termodynamika w pierwszym terminie zostanie uznana podczas kolejnego egzaminu), ale pod warunkiem zdania całego egzaminu w sesji letniej lub jesiennej tego samego roku. 5. Przewiduje się 3 terminy egzaminów (dwa w sesji letniej i jeden w sesji jesiennej).

4 Regulamin (2) 6. Student ma prawo do dwukrotnego poprawiania niezdanej połówki egzaminu, ale tylko w ramach terminów ustalonych przed sesją egzaminacyjną. 7. W zależności od liczby punktów zdobytych (P) na egzaminie pisemnym wynikają następujące konsekwencje: P 50% - egzamin cząstkowy jest zdany; ocena łączna jest średnią arytmetyczną wyników z termodynamiki oraz kinetyki i elektrochemii. Ocena wynika z powyższego zestawienia, ale można ją poprawiać na egzaminie ustnym. 8. Jedyne materiały dopuszczalne na egzaminie pisemnym to: - kalkulator, - przyrząd do pisania, - linijka, - kartka papieru milimetrowego (do rysowania wykresów).

5 Regulamin (3) Konsekwencją posiadania przy sobie w trakcie egzaminu innych materiałów, a szczególnie ściąg i podobnych pomocy, jest niezaliczenie egzaminu. Podkreślam – posiadania, a niekoniecznie korzystania Egzamin pisemny składa się z 5 pytań i 1 zadania. Pytania wybierane są z zestawu około 60 problemów. Pytania pogrubione, tak zwane NIEZAPOMINAJKI, oceniane są dwa razy wyżej niż pytania pozostałe.zestawu około 60 problemów 9.2. Egzamin ustny traktowany jest jako poprawa egzaminu pisemnego. Warunkiem koniecznym jego zaliczenia, jest udzielenie poprawnych odpowiedzi na wszystkie niezapominajki, które nie zostały zaliczone podczas egzaminu pisemnego. Druga część będzie polegać na odpowiedzi (pisemnej + ewentualne ustne wyjaśnienia) na kilka wylosowanych pytań z podanej listy. Nie muszą to być pytania z egzaminu pisemnego. Na egzaminie ustnym można również poprawiać ocenę zaliczającą. W tym przypadku pytania mogą wykraczać poza listę pytań egzaminacyjnych. listę pytań egzaminacyjnych

6 Egzamin - pytania 1. Podać definicje: funkcji stanu, różniczki zupełnej, parametrów intensywnych i ekstensywnych (przykłady parametrów). 2. Definicje procesów: adiabatycznego, diatermicznego, kwazystatycznego (przykłady). 4. I Zasada Termodynamiki; definicja entalpii; I Zasada wyrażona poprzez entalpię. 9. Podać definicję standardowej entalpii tworzenia (spalania) acetonu [*] (CH 3 COCH 3(c) ) w temperaturze T; Obliczyć standardową entalpię reakcji: CH 3 OH (g) + CO (g) → CH 3 COOH (g) [*] wykorzystując standardowe entalpie tworzenia (spalania).

7 Egzamin – przykładowe zadanie Prężności par nasyconych nad czystymi składnikami A i B, mogą być wyrażone w postaci: gdzie i = A, B w interesującym nas przedziale temperatur. Mieszanina ciekła A + B jest praktycznie roztworem doskonałym. Podać i naszkicować orientacyjnie równania izobary (dla p = p 0 ) równowagi ciecz-para dla tego układu czyli temperatury wrzenia w funkcji składu fazy ciekłej i składu fazy gazowej.

8 Literatura Chemia fizyczna, praca zbiorowa, PWN, Warszawa P.W. Atkins, Chemia fizyczna, PWN, Warszawa H. Buchowski, W. Ufnalski, Podstawy termodynamiki, WNT, Warszawa H. Buchowski, W. Ufnalski, Gazy, ciecze, płyny, WNT, Warszawa H. Buchowski, W. Ufnalski, Roztwory, WNT, Warszawa H. Buchowski, W. Ufnalski, Równowagi chemiczne. WNT, Warszawa 1995

9 Literatura K. Gumiński, Termodynamika, PWN, Warszawa K. Pigoń, K. Ruziewicz, Chemia fizyczna. Podstawy fenomenologiczne. PWN, Warszawa, K. Zalewski, Wykłady z mechaniki i termodynamiki statystycznej dla chemików, PWN, Warszawa K. Zalewski, Wykłady z termodynamiki fenomenologicznej i statystycznej, PWN, Warszawa 1978.

10 Czym zajmuje się termodynamika?

11 Termodynamika zajmuje się opisem (mechanicznym) układów makroskopowych, złożonych z olbrzymiej liczby elementów składowych (cząsteczek).

12 Jak znaleźć stan mechaniczny układu cząsteczek – równania Newtona Układ 3 równań różniczkowych drugiego rzędu Do rozwiązania niezbędne jest 6 warunków brzegowych Dla N cząsteczek – 6N parametrów! Ale czy rzeczywiście taka liczba parametrów jest niezbędna ? Parametry makroskopowe są uśrednionymi i zsumowanymi parametrami cząsteczkowymi

13 Podsumowanie zadań termodynamiki Cel - znalezienie (i wykorzystywanie w celach praktycznych) związków pomiędzy parametrami makroskopowymi dla pewnych stanów oraz procesów. Dwie drogi: Termodynamika statystyczna – wyprowadza związki na podstawie właściwości cząsteczkowych. Termodynamika klasyczna (fenomenologiczna) – opiera się na czterech aksjomatach zwanych Zasadami Termodynamiki i nie odwołuje się do cząsteczkowej struktury materii.

14 Parametry termodynamiczne opisujące układ

15 Parametry termodynamiczne V, n 1, n 2, …., p, T parametry intensywne: p, T - ciśnienie, temperatura parametry ekstensywne: V, n 1, n 2, …. – objętość, ilości składników (liczby moli) p, T, V, n 1, n 2, …. T

16 Funkcje (parametry) stanu – co wynika z prostej konstatacji? Jeśli F jest funkcją stanu, to jest ona bezpośrednio całkowalna dF jest różniczką zupełną, tzn. dla funkcji F(x 1,x 2,...,x n ) Kolejność różniczkowania drugich mieszanych pochodnych cząstkowych jest dowolna, czyli spełnione są relacje Maxwella dla każdej pary i,j

17 otoczenie układ

18 układ izolowany osłona przepływ masy układ zamknięty układ otwarty masa, energia

19 Osłony osłona adiabatyczna - taka, że tylko procesy w otoczeniu związane z wykonywaniem pracy wpływają na stan układu → proces adiabatyczny. osłona diatermiczna (termicznie przewodząca) - taka, że dla trzech układów (A, B, C) ograniczonych taką osłoną, spełniona jest następująca relacja A jest w równowadze z B B w równowadze z C ABC A jest w równowadze z C C’

20 „Przechodniość” w życiu Kuba Lukrecja Ignacy

21 Zerowa Zasada Termodynamiki Jest równoważna postulatowi istnienia osłony diatermicznej Z warunku równowagi i własności osłony diatermicznej wynikają związki pomiędzy parametrami układów będących w stanie równowagi Co jest możliwe tylko wtedy, kiedy istnieje wspólny parametr Jest to definicja temperatury (empirycznej) T

22 Proces odwracalny (kwazystatyczny) p pzpz Proces odwracalny (kwazystatyczny) - taki, że nieskończenie mała zmiana wartości parametrów wystarczy do odwrócenia jego kierunku. p - dp p + dp Zmiana ciśnienia o 2·dp prowadzi do odwrócenia procesu.

23 Zasada Duhema (na razie empiryczna) W jednofazowym układzie zamkniętym (n=const) dwa parametry wystarczą do pełnego opisu stanu układu. f(p,V, T) = 0 - równanie stanu Najprostsze równanie stanu: równanie stanu gazu doskonałego: pV = nRT

24 Praca objętościowa p V pzpz dl czy

25 Praca objętościowa – jaki znak? Patrzymy na Świat z perspektywy Układu Praca wykonana przez układ nad otoczeniem układ traci energię praca powinna być ujemna dV > 0 dw > 0

26 Praca objętościowa p pzpz pzpz 0pproces odwracalny dw0-p z dV-pdVmin szybkośćmaks0min Praca odwracalna jest minimalna (maksymalna)

27 Inne rodzaje pracy

28 Czy praca objętościowa jest funkcją stanu? W ogólnym przypadku nie (!), bo dw = - p z dV A dla przemiany odwracalnej? dw = - pdV

29 Czy praca objętościowa jest funkcją stanu? p V A B Praca objętościowa nie jest funkcją stanu także dla przemiany odwracalnej! T=const

30 Podsumowanie i wnioski Termodynamika zajmuje się układami makroskopowymi (złożonymi z olbrzymiej liczby cząsteczek). Opisuje je za pomocą parametrów (funkcji) stanu. Dwa sposoby znajdywania związków pomiędzy parametrami – termodynamika klasyczna i statystyczna. Temperatura zdefiniowana poprzez Zerową Zasadę Termodynamiki. Praca objętościowa jako konsekwencja przyjęcia parametru V.

31 Podsumowanie i wnioski Praca objętościowa nie jest funkcją stanu, w związku z czym nie jest spełniana fundamentalna (!) równość: Jedyna możliwość „uratowania” zasady zachowania energii to przyjęcie istnienia jeszcze innego sposobu przekazywania energii (Q). Wtedy byłoby

32 I ZASADA TERMODYNAMIKI Postuluje się istnienie funkcji stanu, zwanej energią wewnętrzną (U), która ma następujące właściwości: 1. Jest funkcją ekstensywną 2. Jej różniczka zupełna równa się różniczkowej pracy w przemianie adiabatycznej w układzie zamkniętym dU = (dw) ad

33 Ciepło Bilans energii definicja ciepła

34 Entalpia Bilans entalpii Jest funkcją ekstensywną!

35 Ciepło jako funkcja stanu Prawo Hessa Germain Hess ( )

36 Jak mierzymy efekt cieplny? Pojemność cieplna pod stałym ciśnieniem Pojemność cieplna w stałej objętości

37 Termochemia

38 Standardowa entalpia reakcji (ΔH o ) N 2 + 3H 2 → 2NH 3 Niejednoznaczność zapisu! Konieczność ścisłego zdefiniowania stanu początkowego i końcowego!

39 Standardowa entalpia reakcji (ΔH o ) – reakcja standardowa Reakcja biegnie do końca. Bierze w niej udział liczba moli reagentów wynikająca z równania stechiometrycznego. Temperatura oraz ciśnienie w stanie początkowym (substraty) i końcowym (produkty) są takie same. Reagenty występują w stanach standardowych.

40 Standardowa entalpia reakcji (ΔH o ) – stan standardowy Ciśnienie p° = 1 bar, gazy (też mieszaniny) - czyste gazy doskonałe, substancje skondensowane (czyste lub w roztworze, poza jonami) - czyste składniki, jony w roztworze - roztwór doskonały o stężeniu 1 mol/ 1000 g rozpuszczalnika.

41 Standardowa entalpia reakcji (ΔH o ) – problem wyznaczenia N 2 + 3H 2 → 2NH 3 ΔH o = suma entalpii produktów – suma entalpii substratów ? Jest to niewykonalne, ponieważ nie wyznaczymy H reagentów! Możemy jedynie posługiwać się zmianami entalpii. Zadanie: zdefiniować jakąś podstawową, ogólną reakcję, której standardowe entalpie stanowiłyby podstawę obliczania standardowych entalpii dowolnej reakcji.

42 Standardowa entalpia tworzenia (ΔH f o ) Jest to standardowa entalpia następującej reakcji: pierwiastki w stanach termodynamicznie trwałych 1 mol związku dla C 2 H 5 OH (c) (T = 300 K)? dla 2C (grafit) + 3H 2(g) + 1/2O 2(g) → C 2 H 5 OH (c)

43 Uogólnione współczynniki stechiometryczne N 2 + 3H 2 → 2NH 3 ΔH o = suma entalpii produktów – suma entalpii substratów Współczynniki stechiometryczne? 1, 3, 2? Nie! -1, -3, +2

44 Standardowa entalpia z entalpii tworzenia pierwiastki w stanach termodynamicznie trwałych w ilościach wynikających ze stechiometrii

45 Standardowa entalpia z entalpii tworzenia

46 Standardowa entalpia spalania (ΔH sp o ) Jest to standardowa entalpia następującej reakcji: 1 mol związku + nO 2(g) mCO 2(g) + kH 2 O

47 Zależność ∆H od temperatury – prawo Kirchhoffa Gustav Kirchhoff ( ) Związki między parametrami zdefiniowane poprzez pochodne!

48 Standardowa energia wewnętrzna (ΔU o ) O różnicy pomiędzy standardową entalpią a energią wewnętrzną decyduje zmiana objętości.

49 Standardowa energia wewnętrzna (ΔU o ) - przykład N 2(g) + 3H 2(g) → 2NH 3(g) N 2(g) + 3H 2(g) → 2NH 3(c)

50 Średnia termochemiczna energia wiązań E XY ….X-Y… (g) X (g) + Y (g) CH 4(g) + 4Cl 2(g) → CCl 4(c) + 4HCl (g) Przykład:

51 Jeszcze parę słów o temperaturze Czego temperaturę mierzymy? Mierzymy temperaturę termometru! Musi istnieć wspólny parametr. Wtedy temperatura termometru jest równa temperaturze układu. Zapewnia nam to istnienie osłony diatermicznej, co gwarantuje Zerowa Zasada Termodynamiki.

52 Jak zmierzyć temperaturę? Jeśli nie bezpośrednio, to jak? Równanie stanu F(T, p, V, n = const) = 0. Stąd Ścisłą zależność daje nam pochodna: Ale pochodnej tej nie znamy! Co robić? Najprostsze rozwiązanie: Potrzebne dwa punkty do kalibracji!

53 Jeszcze parę słów o temperaturze Wady „takiej” temperatury: arbitralność definicji, uzależnienie od cieczy, termometrycznej. Anders Celsius ( )

54 Jeszcze parę słów o temperaturze pV t/ o C t =-273,15 Różne gazy, p  0, m = const

55 Jeszcze parę słów o temperaturze pV t/ o C t =-273,15 Różne gazy, p  0, V 0 (T 0,p 0 ) = const skala Kelvina William Thomson ( )

56 Jeszcze parę słów o temperaturze Termometr gazowy i temperatura empiryczna

57 I ZASADA TERMODYNAMIKI Postuluje się istnienie funkcji stanu, zwanej energią wewnętrzną (U), która ma następujące właściwości: 1. Jest funkcją ekstensywną 2. Jej różniczka zupełna równa się różniczkowej pracy w przemianie adiabatycznej w układzie zamkniętym dU = (dw) ad

58 Dlaczego pewne procesy zachodzą, a inne nie? W świecie, w którym żyjemy zachodzą tylko niektóre procesy, które nie są sprzeczne z I Zasadą. I Zasada nie wystarczy! Te procesy, które zachodzą, są nieodwracalne.

59 Cały nasz Świat tworzą procesy nieodwracalne …

60

61

62

63

64

65 Dlaczego ???? A może „zasada minimalizacji energii”? dU ≤ 0 ? dU = -p z dV + dQ ≤ 0 ? dla V = const dQ ≤ 0 ? w warunkach izochorycznych możliwe tylko procesy egzotermiczne ≤ 0 ?

66 Eksperyment z kartami Jakie jest prawdopodobieństwo powrotu do pierwotnego, uporządkowanego rozkładu poprzez tasowanie ? Liczba wszystkich konfiguracji (kolejności kart) wynosi 52! Ω = 52! Jeśli wszystkie konfiguracje są jednakowo prawdopodobne, to prawdopodobieństwo zaistnienia jednej z nich wynosi

67 II zasada termodynamiki - swobodna ekspansja gazu – przykład procesu nieodwracalnego Początek - 1

68 Swobodna ekspansja gazu – przykład procesu nieodwracalnego 2

69 3

70 4

71 5

72 6

73 7

74 8

75 8

76 7

77 6

78 5

79 4

80 3

81 2

82 II zasada termodynamiki - swobodna ekspansja gazu – przykład procesu nieodwracalnego Początek - 1

83 Swobodna ekspansja gazu – przykład procesu nieodwracalnego

84 Swobodna ekspansja gazu Każdej cząsteczce możemy przydzielić jeden z dwóch stanów – L i P. Cząsteczka w każdym z nich może się znaleźć z jednakowym prawdopodobieństwem. Jeśli przyjąć, że zmiana konfiguracji odbywa się w czasie Plancka, tj.  = s, przejście po wszystkich konfiguracjach wymagałoby czasu rzędu 2 N lat! To znacznie dłużej niż istnieje (i będzie istniał) Wszechświat! Liczba wszystkich możliwych stanów wynosi: 2∙2∙2∙2∙… = 2 N. Przy założeniu, że wszystkie lokalizacje każdej cząsteczki są jednakowo prawdopodobne, prawdopodobieństwo powrotu do stanu początkowego wynosi

85 Entropia w ujęciu statystycznym formułujemy zasadę wzrostu entropii: Dla każdego spontanicznego procesu zachodzącego w układzie izolowanym, tj. U, V, N = const, entropia musi rosnąć, osiągając maksimum w stanie równowagi Jednemu stanowi makroskopowemu odpowiada olbrzymia liczba mikrostanów kwantowych Jeśli wszystkie stany są jednakowo osiągalne, to spontaniczny proces w układzie izolowanym biegnie od stanu 1 do stanu 2, jeśli Ω 1 <<  2 Wprowadzając funkcję zwaną entropią S = k lnΩ

86 Podsumowanie Znaczenie funkcji S = k ln  Stanowi makroskopowemu odpowiada wielka liczba mikrostanów kwantowych. Proces nieodwracalny przebiega od stanu mniej prawdopodobnego (realizowanego przez mniejszą liczbę mikrostanów kwantowych) do stanu bardziej prawdopodobnego (realizowanego przez większą liczbę mikrostanów kwantowych). Stanowi równowagi odpowiada maksymalna liczba mikrostanów kwantowych. Równoważne sformułowanie posługuje się pojęciem entropii. Odpowiednia reguła, zwana zasadą wzrostu entropii brzmi: Dla (N,V,U=const, tj. dla układu izolowanego) możliwy jest tylko proces, któremu towarzyszy wzrost entropii, która osiąga maksimum w stanie równowagi.

87 Właściwości entropii Ponieważ dla układu złożonego, Ω = Ω 1 ∙  2 - entropia jest funkcją ekstensywną S = kln Ω S = S 1 + S 2

88 Znaczenie pochodnej N 1,V 1 N 2,V 2 N = const V = const U 1 + U 2 = const Jaki będzie warunek równowagi względem przepływu energii pomiędzy 1 a 2 ? U 1 U 2 izolacja od otoczenia Zgodnie z zasadą wzrostu entropii, stan równowagi odpowiada maksimum entropii S = S 1 + S 2 Przyjmijmy, że parametrem niezależnym jest U 1, wtedy dU 1 + dU 2 = 0 dU 1 = - dU 2

89 Znaczenie pochodnej N 1,V 1 N 2,V 2 N = const V = const U 1 + U 2 = const W stanie równowagi U1U1 U2U2 izolacja od otoczenia Definicja temperatury termodynamicznej

90 Związek pomiędzy termodynamiką statystyczną a klasyczną Jeśli przyjmiemy, że k = R/N A stała Boltzmanna

91 Ciepło a entropia dU = dw + dQ dU = dw odw + dQ odw ciepło odwracalne – dQ odw jest maksymalne praca odwracalna - dw odw jest minimalna dQ odw ≥ dQ TdS =

92 II zasada termodynamiki Postuluje się istnienie funkcji stanu zwanej entropią (S), która ma następujące właściwości Jest funkcją ekstensywną

93 Lokalny charakter II Zasady II Zasada nie ma charakteru uniwersalnego, stosuje się jedynie do układów: - makroskopowych, - w stanie równowagi, - ergodycznych. Z braku uniwersalności wynikają liczne nieporozumienia i błędne interpretacje (do dnia dzisiejszego !)

94 Rudolf Julius Emmanuel Clausius ( ) Ludwig Eduard Boltzmann ( )

95 Wnioski z I i II zasady (1) dU = -pdV + TdS dU = dw + dQ = dw odw + dQ odw Wnioski: I stnienie związków pomiędzy parametrami (funkcjami) stanu. U zasadnienie zasady Duhema (dwa parametry opisują różniczkę zupełną). I nterpretacja temperatury i możliwe dalsze rozwinięcie dU.

96 Wnioski z I i II zasady(2) dU = -pdV + TdS To jest bilans energii: praca +ciepło ! „zwykła” siła ….bo mogą być inne formy przekazywania energii ! parametr intensywny – siła uogólniona deformacja parametru ekstensywnego

97 Wnioski z I i II Zasady (3) dla procesu odwracalnego dla każdego procesu U,V,(N) = const …. entropia rośnie i osiąga maksimum w stanie równowagi (zasada wzrostu entropii)

98 Wnioski z I i II Zasady (4) dla procesu odwracalnego dla każdego procesu S,V,(N) = const …. energia wewnętrzna maleje i osiąga minimum w stanie równowagi

99 Wnioski z I i II Zasady (5) Nie tylko entropia decyduje o naszym Świecie…. Parametrem rozstrzygającym o kierunku zachodzenia procesów mogą być różne funkcje (zwane potencjałami termodynamicznymi). Entropia jest potencjałem termodynamicznym dla U,V, N = const, podczas gdy dla warunków S,V,N = const, takim potencjałem jest energia wewnętrzna. Z praktycznego punktu widzenia najlepszy byłby potencjał „rządzący” procesami w warunkach dających się łatwo kontrolować (stałe parametry p, V, T)

100 Wnioski z I i II Zasady (6) – pozostałe potencjały dla procesu odwracalnego Entalpia: H = U + pV …. entalpia maleje i osiąga minimum w stanie równowagi dla każdego procesu S,p,(N) = const U = H - pV

101 Wnioski z I i II Zasady (7) – pozostałe potencjały dla procesu odwracalnego Energia swobodna: F = U - TS …. energia swobodna maleje i osiąga minimum w stanie równowagi dla każdego procesu T,V,(N) = const U = F + TS

102 Wnioski z I i II Zasady (8) – pozostałe potencjały dla procesu odwracalnego Entalpia swobodna: G = H – TS …. entalpia swobodna maleje i osiąga minimum w stanie równowagi dla każdego procesu T,p,(N) = const U = G – pV + TS = U + pV - TS

103 Entalpia swobodna – najważniejszy potencjał termodynamiczny różniczka zupełna Entalpia swobodna (energia Gibbsa, funkcja Gibbsa) G = H – TS pochodne cząstkowe relacja Maxwella

104 Potencjały termodynamiczne – pochodne i różniczki Potencjał termod. różniczka zupełna pochodne cząstkowe relacje Maxwella EntropiadS = (1/T)dU + (p/T)dV (  S/  U) V = 1/T (  S/  V) U = p/T Energia wewnętrzna dU = TdS - pdV (  U/  S) V = T (  U/  V) S = -p (  T/  V) S = - (  p/  S) V EntalpiadH = TdS +Vdp (  H/  S) p = T (  H/  p) S = V (  T/  p) S = (  V/  S) p Energia swobodna dF = -SdT - pdV (  F/  T) V = -S (  F/  V) T = -p (  S/  V) T = (  p/  T) V Entalpia swobodna dG = -SdT +Vdp (  G/  T) p = -S (  G/  p) T = V (  S/  p) T = - (  V/  T) p

105 Potencjały termodynamiczne PotencjałParametryWarunek S (II zasada)U,V(dS) U,V ≥ 0 U (I zasada)S,V(dU) S,V ≤ 0 H = U + pVS, p(dH) S,p ≤ 0 F = U - TST, V(dF) T,V ≤ 0 G = H - TST, p(dG) T,p ≤ 0

106 Wnioski z I i II Zasady Termodynamiki 1. Istnieją funkcje (potencjały termodynamiczne), których zmiana, przy stałości dwóch parametrów, decyduje o kierunku procesu; potencjał termodynamiczny osiąga minimum (maksimum) w stanie równowagi. 3. Można wyprowadzić liczne tożsamości, wyrażające związki pomiędzy funkcjami termodynamicznymi, umożliwiające obliczanie ich zmian podczas rzeczywistych procesów. 2. Daje to możliwość znajdywania związków między parametrami w stanie równowagi.

107 Zależność entropii od temperatury

108 Jak wyznaczyć entropię? cpcp lnT lnT 1 lnT 0

109 III Zasada Termodynamiki Jeśli przyjmiemy, że S(T=0) = 0 - postulat ten nosi nazwę III Zasady Termodynamiki, W termodynamice statystycznej wymóg ten jest zbyteczny, bo dla S(Ω =1) = kln(1) = 0 i ten stan odpowiada T = 0


Pobierz ppt "Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe:"

Podobne prezentacje


Reklamy Google