Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Roman Domański Warsaw University of Technology Roman Domański Warsaw University of Technology Beijing, April 26-27, 2007 Beijing, April 26-27, 2007 63.

Podobne prezentacje


Prezentacja na temat: "Roman Domański Warsaw University of Technology Roman Domański Warsaw University of Technology Beijing, April 26-27, 2007 Beijing, April 26-27, 2007 63."— Zapis prezentacji:

1

2 Roman Domański Warsaw University of Technology Roman Domański Warsaw University of Technology Beijing, April 26-27, 2007 Beijing, April 26-27, Executive Committee Meeting ”

3 World Population * CHINA INDIE USA NIGERIA ETIOPIA BRAZYLIA INDONEZJA Intoduction

4 During the next 25 years will not be the essential increase of the population in Poland. The energy policy will be the continuation of the present one. Poland has the very high concentration of hard-coal on the square kilometre of the surface. We have to enlarge the energetistic safety - we import gas and oil from the Russia and we have problems with the continuity of deliveries.

5 World primary energy demand of the IEA Energy Outlook Reference Scenario

6 World Energy Council scenarios for energy demand

7 Emmission and temperature increase (World Energy Counsil)

8 Primary energy consumption by fuel; years 2020, 2050 according to WEC different scenarios

9 Total primary energy consumption in Poland 10 6 [toe] – years 1950  2000.

10 Primary energy consumption in Poland by fuels and total - years 1950  2000 Coal + lignite more then 56%

11

12 Primary energy consumption in Poland Wariant I – Economic growth rate about 3.5% Wariant II – Economic growth rate 4.5% Problems with CO 2

13 Primary energy consumption in Poland per Capita Wariant I – Economic growth about 3.5% Wariant II – Economic growth about 4.5%

14 WEC – electricity cosumption for Poland TWh

15 WEC – electricity cosumption for Poland per capita

16 World CO 2 emission

17 Primary Energy Consumption in „Old” UE and Poland Coal Oil Gas Nuclear Hydro+

18 Reduction of SO 2 according to Oslo agreement (1994)

19 Present Growing interest for Heat Pump Water storage tanks for Co-generation Mixed combustion Coal + Biomass Main source – biomass About 3% of electricity from Hydro, increasing number of small hydro < 5MW Solar thermal for Hot Water and Heating Growing wind Farms Geothermal – we must to check our real resources Data given from 291 EJ to 1007 EJ Technically accessible geothermal energy supplies 0,668 EJ (Ministry of the environment protection) 116 EJ ( PAN, Ney, 1997) 625 EJ (Zimny)

20 Future Nuclear Power Plant – 1000 MW e ??? HTGR – for coal gaszification Big project – Clean Coal Technology 20% from renewables in 2020 ??? – that will be difficult for Poland there are the possibilities of the accumulation of the dioxide of the carbon in mine excavations bridges de-icing – solar energy – ground energy storage

21 Main - Working installations Borowa Góra – UTES + solar collectors + heat pump since 1994 – 4 sections (12 vertical heat exchangers 21 m long, length 252 m for each section), total length – 1008 m, volume of ground m 3, 63 m 2 of solar collectors, heat pump 4.85 kW – heating power kW (information about project –

22 Summary Growing interest for TES with PCM and general TES with heat pump, First big water storage tank for TES in cogeneration Power Plant New project for microprocessor electronic equipments cooling with PCM - TES „Application” for government project with TES (PCM) and Renewable – Euro Strong research team in Universities and Polish Academy of Science - PCM TES field TES – introduced to University Programs International cooperation on geothermal energy - Island Euro

23 research Main Units involved in TES research Warsaw University of Technology Polish Academy of Sciences Technical University of Białystok Technical University of Silesia

24 Thermal Stability Measurement THERMAL ENERGY STORAGE Experimental Work Theoretical & Numerical Modeling Thermal Properties Measurement Basic Research Temporal Thermal Characteristics of Charging and Discharging Processes PCM Storage Units Study of Free Convection Special Stand for BC Verification Verification of The Numerical Model The Stage of Designing System Modelling Temperature Field Modeling Natural Beds Modeling System Modelling Latent Heat Source Modelling Sensible Heat H = f(T) c p =f(T) a = f(T) H m

25 Actual research activities in the field of TES at WUT: Experimental and numerical analysis of free convection with solid-liquid phase transition in binary systems; J. Banaszek, R. Domaski, K. Bogowska (Phd student), M. Rebow, T. Winiewski, T.A. Kowalewski Experimental and numerical analysis of free convection with solid-liquid phase transition in binary systems; J. Banaszek, R. Domański, K. Błogowska (Phd student), M. Rebow, T. Wiśniewski, T.A. Kowalewski (Polish Academy of Sciences) Investigation of complex heat transfer processes for different geometrical configurations (according to TES with PCM)  measurements of velocity and temperature fields,  measurements of interface profiles,  numerical symulation of melting and solidification (FIDAP); R. Domaski,, M. Jaworski, M. Rebow  measurements of velocity and temperature fields,  measurements of interface profiles,  numerical symulation of melting and solidification (FIDAP); R. Domański,, M. Jaworski, M. Rebow Thermal properties measurements of PCMs; R. Domaski, M. Jaworski Thermal properties measurements of PCMs; R. Domański, M. Jaworski

26 Actual research activities in the field of TES: Investigation of the pilot spiral thermal energy storage unit with capacity (60  100MJ)  charging and discharging processes, heat losses,  full numerical simulation and parametric analysis of the STES unit; R. Domaski, J. Banaszek, M. Rebow, M. Jaworski  full numerical simulation and parametric analysis of the STES unit; R. Domański, J. Banaszek, M. Rebow, M. Jaworski PCM aplication for microprocessor cooling - 4 persons, 4 Master Thesis

27 Measurement of Thermal Properties of PCMs Measurement of Thermal Properties of PCMs: Standard Differential Scanning Calorimeter (DSC) - a sample mg Standard Differential Scanning Calorimeter (DSC) - a sample mg DTA (Differential Thermal Analysis)  a sample 20  50 g Simple Thermal Analysis Simple Thermal Analysis :  complex measurement of thermal properties; a sample 30  90 g  complex measurement of thermal properties; a sample 30  90 g,  thermal properties stability measurements; a sample 200  600 g.  melting point (or temperature range),  specific heat, latent heat  enthalpy vs. temperature,  thermal conductivity,  stability in succeeding cycles of heating and cooling Measurement Techniques Measurement Techniques:

28 Microprocessor cooling with PCM Theoretical investigation – numerical simulation of melting and solidification phenomena, heat transfer from cooling unit PCM investigation Investigation of complex heat transfer processes for different geometrical configurations Introducing new cooling units

29 Basic research – heat transfer on fins -microprocessor cooling with PCM

30 Experimental Results 2000s2800s Eksperiment #5 13,75[W] Eksperiment #7 9,87[W] Comparison of results

31 PCM

32 Simple PCM unit PCM Heat flux

33 Pipe with PCM

34 Temperature distribution

35

36 Moc falowania na świecie w kW/m długości grzbietu fali Fale o długim okresie (~7-10 s) i dużej amplitudzie (~2 m) mają strumień mocy często przekraczający kW na metr długości fali. Jak większość OZE, energia fal jest nierównomiernie rozłożona na kuli ziemskiej. Największą aktywność fale mają na szerokościach geograficznych od ok. 30° do ok. 60° na obu półkulach, wywołane przez przeważające wiatry zachodnie wiejące w tamtych regionach.

37 Wiatraki początku XXI wieku Moce 1,5 - 4 MW (obecny standard 1000 kW) wirnik trójłopatowy (rzadziej dwułopatowy) wirnik skierowany na wiatr - „upwind” pozioma oś obrotu (gondola stalowa lub z tworzyw sztucznych) wysokość minimalna 40 m ( m) wieża stalowa tubularna (rzadziej kratownicowa) średnica wirnika od 43 do 80 m układy z dyfuzorami

38 World Wind Energy Poland – 1MW (1996), 3MW (1997), 5MW (2000), 10MW (2002) 58 MW (2004), about 400 MW, Germany – 2006 abut MW. Year

39 Prognoza produkcji i udziału energetyki wiatrowej w energetyce światowej Wind Force 12 – Greenpeace, Bruksela, May, 2003

40 R/P R/P (ang. Reserves/Production) jest relacją wielkości rocznego wydobycia. Relacja ta oznacza więc liczbę lat, na jaką udokumentowane zasoby wystarczyłyby przy zachowaniu obecnego poziomu wydobycia Udokumentowane zasoby ropy naftowej stanowią złoża, których istnienie zostało potwierdzone za pomocą badań geologicznych i których wydobycie będzie możliwe i opłacalne przy dzisiejszych możliwościach technicznych i dzisiejszych warunkach ekonomicznych

41 Energetyka wiatrowa na Świecie Dominacja Niemiec w rozwoju energetyki wiatrowej w roku 2006 ok MW

42 Nakłady inwestycyjne na energetykę wiatrową biliony EUR/a -??? Wind Force 12 – Greenpeace, Bruksela, May, 2003 Potencjał energetyki wiatrowej w Polsce jest szacowany na 10% obecnego zapotrzebowania na energię elektryczną

43 Technical status of Renewable Energy Systems

44 2. Wood combustion is commercial along with ethanol MWt = megawatts Thermal MWe = megawatts electric kWe = kilowatts electric n.a. = not applicable or not available L, M, H= low, medium, high Technical feasibility, conversion efficiency and unit size are based upon current views. All of the tables shown are meant to convey a sense of progress and direction

45 Elektrownia Dychów

46 SOLAR ENERGY AND PHOTOSYNTHESIS WORLD ENERGY BALANCE SOLAR ENERGY AND PHOTOSYNTHESIS & WORLD ENERGY BALANCE Solar energy reaching Earth per year 3*10 24 J Fossil fuel inventory Probable *10 23 J Proved *10 22 J Energy consumption *10 20 J *10 20 J *10 20 J Energy bound by photosynthesis per year 3*10 21 J Food consumption per year 1.5*10 9 J 39.1 days 3.75 days 47.7 min min min. 0.1% 9.06% 10.77% 11.23% 0.5%

47 EFFICIENCY OF SOLAR ENERGY COLLECTING AND CONVERTING. Thermal ( phy. - chem. ) Biochemical Photo ( phy. - chem. ) Source Collector Reactor kWh Q H2H2 CH 2 Q H2H2 H2H2 overall efficiency H2H2 >0.5 ~     ?   CH 2, H 2 - fuel production Q - heat kWh - electricity

48 WYKORZYSTANIE ENERGII WODNEJ (mln toe)

49 Elektrownie Szczytowo-Pompowe w Polsce ElektrowniaMoc [MW] Spad [m] Typy hydrozespołów Żarnowiec xFrancisa Porąbka-Żar xFrancisa Żydowo150772xFrancisa Niedzica95402xDeriaza Dychów90*283xKaplana *dane po modernizacji na dzień 16 września 2005

50 Energy balance and demand for USA

51 Total Energy Demand IEA

52 ZUŻYCIE ENERGII PIERWOTNEJ (mln toe)

53 Increase in Energy Use Expected as a Result of population Increase (dev - developing country, ldc - low developing country)

54 The biggest proven reserves of hard coal

55 World Energy Consumption by Fuel Type,

56 Energy conwersion KINETIC ENERGY (external, substantial) KINETIC ENERGY (external, substantial) GRAVITATIONAL ENERGY (external field-on Earth substantial) GRAVITATIONAL ENERGY (external field-on Earth substantial) ELECTRO- MAGNETIC ENERGY (external,subst.) ELECTRO- MAGNETIC ENERGY (external,subst.) Conversion INTERNAL ENERGY (substantial) Conversion (electro- mech.) SYSTEM ENVIROMENT

57 Renowable energy capacity Windr _A – over the land, Wind_B – over the sea, Wind_C – USA OTEC_te – technicaly avaiable

58 Growing U.S. Electricity Consumption

59 U.S. Energy-Related Carbon Dioxide Emissions, (million metric tons) metric tons per million dollars of GDP History Projections Annual Energy Outlook 2005 and 2006


Pobierz ppt "Roman Domański Warsaw University of Technology Roman Domański Warsaw University of Technology Beijing, April 26-27, 2007 Beijing, April 26-27, 2007 63."

Podobne prezentacje


Reklamy Google