Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Równania Schrödingera Zasada nieoznaczoności Michał Guguła Wydział Górnictwa i Geoinżynierii Katedra Górnictwa Odkrywkowego Kraków, 21.03.2016 www.agh.edu.pl.

Podobne prezentacje


Prezentacja na temat: "Równania Schrödingera Zasada nieoznaczoności Michał Guguła Wydział Górnictwa i Geoinżynierii Katedra Górnictwa Odkrywkowego Kraków, 21.03.2016 www.agh.edu.pl."— Zapis prezentacji:

1 Równania Schrödingera Zasada nieoznaczoności Michał Guguła Wydział Górnictwa i Geoinżynierii Katedra Górnictwa Odkrywkowego Kraków,

2 Równania Schrödingera 1926r. – sformułowanie mechaniki falowej Podstawą jest związek de Broglie`a p=h/λ Uogólnienie hipotezy de Broglie`a Funkcja reprezentująca falę de Broglie`a- funkcja falowa ψ, funkcja współrzędnych przestrzennych i czasu ψ(x,y,z,t) Swobodna cząstka poruszająca się w kierunki osi x: Erwin Schrödinger

3 Równania Schrödingera Jaki jest związek pomiędzy funkcją falową, a opisywanym przez nią elektronem? Wielkość IψI 2 w dowolnym punkcie przedstawia miarę prawdopodobieństwa, że cząstka znajdzie się w pobliżu tego punktu (w obszarze wokół tego punktu) Wielkość IψI 2 nazywamy gęstością prawdopodobieństwa Max Born

4 Równania Schrödingera gdzie: E- całkowita energia cząstki U(x) energia potencjalna cząstki zależna od jej położenia ħ=h/2π Rozwiązanie Równania Schrödingera- znalezienie postaci funkcji falowej ψ i wartości energii cząstki E przy znanej działającej na cząstkę sile zadanej poprzez energię potencjalną U

5 Równanie Schrödingera dla atomu wodoru U(x,y,z)- Energia potencjalna dwóch ładunków punktowych (elektronu i protonu) w odległości r: Związek pomiędzy współrzędnymi prostokątnymi (x,y,z) i sferycznymi punktu P

6 Równania Schrödingera Funkcja falowa elektronu (będąca rozwiązaniem równania) zależy od trzech liczb całkowitych - liczb kwantowych n, l, ml. Na każdą współrzędną przestrzenną przypada jedna liczba kwantowa. Te trzy liczby kwantowe oznaczane n, l, m l spełniają następujące warunki: n = 1,2,3… l = 0,1,2,…,n-1 lub 0≤ l ≤ n-1 m l =-l,-l+1,-l+2,…,l-2,l-1,l lub -l ≤ m l ≤ l n- główna liczba kwantowa l- azymutalna liczba kwantowa m l - magnetyczna liczba kwantowa Gęstość prawdopodobieństwa znalezienia cząstki w danym punkcie przestrzeni

7 Radialna gęstość prawdopodobieństwa Prawdopodobieństwo znalezienia elektronu w obszarze pomiędzy r i r+dr, w trzech wymiarach, jest proporcjonalne do elementarnej objętości r 2 dr Na osi x- odległość elektronu od jądra r podzielona przez promień pierwszej orbity Bohra r 1 Na osi y- przyjęto jednostki umowne. Maksima gęstości prawdopodobieństwa, zaznaczone linią przerywaną, odpowiadają promieniom orbit w modelu Bohra dla n =1, 2, 3 (r n = r 1 n 2 ).

8 Kątową gęstość prawdopodobieństwa Orbitale- kątowe rozkłady prawdopodobieństwa. l=0- orbital s, l=1- orbital p, l=2- orbital d, l=3- orbital f.

9 Energia elektronu Energia elektronu związanego w atomie: Otrzymane wartości są identyczne z przewidywaniami modelu Bohra i wartościami obserwowalnymi doświadczalnie. Teoria Schrödingera atomu jednoelektronowego ma ogromne znaczenie, bo podając obraz struktury atomu stworzyła podstawy kwantowego opisu wszystkich atomów wieloelektronowych, cząsteczek oraz jąder atomowych

10 Zasada nieoznaczoności Czy można, przeprowadzając odpowiedni pomiar jednocześnie określić zarówno pęd p jak i położenie x cząstki? Fizyka klasyczna x=vt

11 Zasada nieoznaczoności Jak zatem jest w przypadku mechaniki kwantowej? - Zderzenie po czasie t, - moment zderzenia jest nieokreślony (cząstka jest także falą). Dokładność momentu zderzenia Zwiększając pęd cząstki poprawiamy wynik Pomiar jest niedokładny gdzie: Przyjęto rozmiary cząstki rzędu 1/2 długości fali!

12 Zasada nieoznaczoności Cząstka poruszająca się przekazuje cząstce nieruchomej swój pęd w czasie zderzenia Poprawiana jest dokładność Δx wyposażając cząstkę mierzoną w przyrost pędu Δp Im dokładniej mierzone Δp, tym bardziej rośnie nieoznaczoność położenia Δx

13 Zasada nieoznaczoności Jeżeli cząstka posiada energię E, to dokładność jej wyznaczenia ΔE zależy od czasu pomiaru Δt zgodnie z relacją: ΔEΔt≥h

14 Zasada nieoznaczoności Wnioski: Iloczyn nieokreśloności pędu cząstki i nieokreśloności jej położenia w danym kierunku jest zawsze większy od stałej Plancka Im dokładniej mierzona jest składowa pędu, tym bardziej rośnie nieoznaczoność składowej położenia Jeżeli cząstka posiada energię E, to dokładność jej wyznaczenia ΔE zależy od czasu pomiaru Δt zgodnie z relacją: ΔEΔt≥h Ograniczenie dokładności pomiarów nie ma nic wspólnego z wadami i niedokładnościami aparatury pomiarowej lecz jest wynikiem falowej natury cząstek Tak małe obiekty jak cząstki elementarne czy atomy nie podlegają prawom mechaniki klasycznej, ale prawom mechaniki kwantowej

15 Bibliografia Kąkol Zbigniew: Fizyka, Kraków r, Notatki własne z przedmiotu Fizyka współczesna, P.T. Matthews: Wstęp do mechaniki kwantowej, Warszawa 1977, Wykład Prof. Marka Szopy: https://www.youtube.com/watch?v=ZxCJ89TU4D4 &list=LLWCXgeMSnkAneE9QOBjojdw

16 Dziękuję za uwagę


Pobierz ppt "Równania Schrödingera Zasada nieoznaczoności Michał Guguła Wydział Górnictwa i Geoinżynierii Katedra Górnictwa Odkrywkowego Kraków, 21.03.2016 www.agh.edu.pl."

Podobne prezentacje


Reklamy Google