Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

PODSTAWY STEREOMETRII. POJĘCIA PIERWOTNE Pojęciami pierwotnymi są: Punkt Prosta Płaszczyzna Przestrzeń.

Podobne prezentacje


Prezentacja na temat: "PODSTAWY STEREOMETRII. POJĘCIA PIERWOTNE Pojęciami pierwotnymi są: Punkt Prosta Płaszczyzna Przestrzeń."— Zapis prezentacji:

1 PODSTAWY STEREOMETRII

2 POJĘCIA PIERWOTNE Pojęciami pierwotnymi są: Punkt Prosta Płaszczyzna Przestrzeń

3 POJĘCIA PIERWOTNE Na jednym slajdzie można ująć pojęcia pierwotne w taki sposób że: w pewnej przestrzeni , dwie płaszczyzny (α i β) przebija prosta l w punktach A i B Ω α β l A B

4 W dalszej części prezentacji stosujemy oznaczenia: a, b, c – krawędzie (najczęściej podstawy) r – promień podstawy bryły (okręgu) R – promień kuli (większego okręgu) h – wysokość ściany bocznej lub podstawy H – wysokość bryły P c – pole powierzchni całkowitej bryły P p – pole powierzchni podstawy bryły P b – pole powierzchni ścian bocznych bryły (suma pól powierzchni ścian bocznych) V – objętość bryły OZNACZENIA – WAŻNE!

5 PpPp H Graniastosłup jest to wielościan, którego dwie ściany, zwane podstawami, zawarte są w płaszczyznach równoległych, a pozostałe ściany, zwane ścianami bocznymi, są równoległobokami. Podstawy graniastosłupa są wielokątami przystającymi. Krawędzie graniastosłupa, które nie są bokami podstaw, nazywamy krawędziami bocznymi. Jeżeli krawędzie boczne są prostopadłe do podstaw, to graniastosłup nazywamy prostym, w przeciwnym wypadku – pochyłym. Graniastosłup prosty, którego podstawy są wielokątami foremnymi (trójkąt równoboczny, kwadrat, sześciokąt itp.), nazywamy prawidłowym. Graniastosłup, którego podstawy są równoległobokami, nazywamy równoległościanem. Graniastosłup prosty, którego podstawy są prostokątami, nazywamy prostopadłościanem. Prostopadłościan, którego wszystkie krawędzie mają tę samą długość, nazywamy sześcianem. GRANIASTOSŁUPY

6 W zależności od figury płaskiej, która jest podstawą graniastosłupa, liczymy kilka pól ścian bocznych (najczęściej prostokąty, ewentualnie równoległoboki – dla graniastosłupów pochyłych). Do obliczenia pola całkowitego P c oraz objętości V graniastosłupa dla dowolnego graniastosłupa stosujemy wzory: P c =2P p +P b V=P p ·H GRANIASTOSŁUP PpPp H

7 Dla prostopadłościanu stosujemy wzory: P c =2ab+2bh+2aH V=a·b·H PROSTOPADŁOŚCIAN a b H

8 Dla sześcianu stosujemy wzory: P c =6a 2 V=a 3 SZEŚCIAN (HEXAEDR) a a a

9 Ostrosłupem nazywamy wielościan, którego jedna ściana, zwana podstawą ostrosłupa, jest wielokątem, a pozostałe ściany, zwane ścianami bocznymi, są trójkątami o wspólnym wierzchołku, zwanym wierzchołkiem ostrosłupa. Odcinek łączący wierzchołek ostrosłupa z jego rzutem prostokątnym na płaszczyznę podstawy (spodkiem wysokości) nazywamy wysokością ostrosłupa. Ostrosłup nazywamy prawidłowym, jeżeli jego podstawa jest wielokątem foremnym, a jego spodek wysokości jest środkiem tego wielokąta. Ostrosłup trójkątny nazywamy czworościanem. OSTROSŁUPY PpPp H W

10 P c =P p +P b OSTROSŁUP PpPp H W W zależności od figury płaskiej, która jest podstawą ostrosłupa, liczymy kilka pól ścian bocznych (zawsze trójkąty). Do obliczenia pola całkowitego P c oraz objętości V ostrosłupa dla dowolnego ostrosłupa stosujemy wzory:

11 P c =P 1 +P 2 +P b OSTROSŁUP ŚCIĘTY Ostrosłup ścięty jest to część ostrosłupa zawarta między jego podstawą i przekrojem poprzecznym równoległym do płaszczyzny podstawy. Podstawy ostrosłupa ściętego są wielokątami jednokładnymi względem wierzchołka ostrosłupa. Ściany boczne są trapezami. P1P1 H P2P2

12 Figurą obrotową powstałą przez obrót figury płaskiej f wokół prostej k, zawartej w płaszczyźnie zawierającej figurę f, nazywamy zbiór wszystkich punktów przestrzeni, które są obrazami punktów figury f w obrotach wokół prostej k o kąt o mierze α, gdzie α. Prosta k nazywa się osią figury obrotowej. Bryłą obrotową nazywamy bryłę, która jest figurą obrotową BRYŁY OBROTOWE

13 P c =2P p +P b =2r 2 +2rH=2r(r+H) WALEC Walec jest to bryła obrotowa, która powstaje przez obrót prostokąta wokół prostej zawierającej jeden z jego boków. Podstawami walca nazywamy dwa koła powstałe przez obrót tych boków prostokąta, które są prostopadłe do osi obrotu. Promień podstawy walca nazywamy promieniem walca, zaś odcinek prostopadły do podstaw, którego końce należą do tych podstaw – wysokością walca r H r P b =2rH Pp=r2Pp=r2 V=Hr 2

14 STOŻEK Stożek (kołowy prosty) jest to bryła obrotowa, która powstaje przez obrót trójkąta prostokątnego wokół prostej zawierającej jedną z przyprostokątnych. Podstawą stożka jest koło powstałe przez obrót przyprostokątnej niezawartej w osi obrotu. Wierzchołek obracanego trójkąta nienależący do podstawy nazywamy wierzchołkiem stożka. Odcinek łączący wierzchołek stożka z jego rzutem prostokątnym na podstawę nazywamy wysokością stożka. Tworzącą stożka nazywamy każdy odcinek zawarty w powierzchni bocznej stożka i łączący wierzchołek z podstawą. Przekrój osiowy stożka to część wspólna stożka i płaszczyzny zawierającej oś stożka. Kąt przy wierzchołku przekroju osiowego nazywamy kątem rozwarcia stożka.

15 P c =P p +P b =r 2 +rl=r(r+l) STOŻEK Dla stożka stosujemy wzory: P b =rl Pp=r2Pp=r2 H r l

16 P c =(R 2 +r 2 +(R+r)l) STOŻEK ŚCIĘTY Stożek ścięty jest to część stożka zawarta między jego podstawą i przekrojem płaszczyzną równoległą do podstawy. Wysokością stożka ściętego nazywamy odcinek łączący podstawy i prostopadły do nich. P b =(R+r)l H r l R

17 KULA Kula jest bryłą obrotową, która powstaje przez obrót koła wokół osi zawierającej średnicę koła. Powierzchnię kuli nazywamy sferą. Promień kuli (sfery) jest równy promieniowi obracającego się koła. Kołem wielkim kuli nazywamy przekrój kuli, do którego należy jej środek R P c =4R 2

18 WIELOŚCIANY FOREMNE Wielościanem foremnym nazywamy wielościan wypukły, którego wszystkie ściany są przystającymi wielokątami foremnymi i wszystkie kąty dwuścienne wyznaczone przez sąsiednie ściany są równe. Istnieje tylko pięć wielościanów foremnych, my poznamy 3: Czworościan Sześcian – (opisany wzorami wcześniej) Ośmiościan

19 CZWOROŚCIAN (TETRAEDR) Czworościan jest zbudowany z czterech trójkątów równobocznych.

20 OŚMIOŚCIAN (OKTAEDR) Ośmiościan jest zbudowany z ośmiu trójkątów równobocznych.


Pobierz ppt "PODSTAWY STEREOMETRII. POJĘCIA PIERWOTNE Pojęciami pierwotnymi są: Punkt Prosta Płaszczyzna Przestrzeń."

Podobne prezentacje


Reklamy Google