Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

SFGćwiczenia 9 UNIWERSYTET WARSZAWSKI WYDZIAŁ ZARZĄDZANIA Systemy finansowe gospodarki Matematyka finansowa cz.2 Warszawa 2012.

Podobne prezentacje


Prezentacja na temat: "SFGćwiczenia 9 UNIWERSYTET WARSZAWSKI WYDZIAŁ ZARZĄDZANIA Systemy finansowe gospodarki Matematyka finansowa cz.2 Warszawa 2012."— Zapis prezentacji:

1 SFGćwiczenia 9 UNIWERSYTET WARSZAWSKI WYDZIAŁ ZARZĄDZANIA Systemy finansowe gospodarki Matematyka finansowa cz.2 Warszawa 2012

2 2 SFGćwiczenia 9 Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy procentowej. Przykłady płatności rentowych (annuitetowych): - wpłaty na fundusze rentowe - płatności na fundusze emerytalne - płatności wynikające z umowy dzierżawy, najmu itp. - opłaty leasingowe; - spłaty kredytu bankowego (tzw. annuitetowego – w kolejnych okresach równe płatności, płatność to suma raty kapitałowej i odsetek, czyli rata kredytu).

3 3 SFGćwiczenia 9 Rachunek rentowy (annuitetowy) dla procentu składanego (wzory) Renta płatna z dołu (płatność z dołu) Renta płatna z góry (płatność z góry)

4 4 SFGćwiczenia 9 Wyjaśnienie oznaczeń K n – wartość przyszła renty (annuity), w literaturze często oznaczana jako FV i,n K 0 – wartość bieżąca renty (annuity), w literaturze często oznaczana jako PV i,n i – stopa procentowa lub dyskontowa (dla jednego okresu), w literaturze często oznaczana jako r n – liczba płatności (okresów) a – wielkość cyklicznej płatności (annuity, renty), w literaturze często oznaczana jako PMT

5 5 SFGćwiczenia 9 Wartość przyszła annuity, czyli renty (kapitalizacja z dołu) Przykład Do banku pan X wpłaca pod koniec każdego roku przez okres 3 lat po zł. Oprocentowanie roczne wynosi 12% przy rocznej kapitalizacji. Oblicz wartość końcową (przyszłą) wkładu.

6 6 SFGćwiczenia 9 Wartość przyszła annuity, czyli renty (kapitalizacja z dołu) Przykład Do banku pan X wpłaca pod koniec każdego roku przez okres 3 lat po zł. Oprocentowanie roczne wynosi 12% przy rocznej kapitalizacji. Oblicz wartość końcową (przyszłą) wkładu.

7 7 SFGćwiczenia 9 Przykład Kowalski zdecydował się wpłacać do banku po 800 zł co roku z góry przez okres 3 lat. Stopa procentowa nominalna roczna wynosi 5%. Jaka będzie wartość przyszła tej lokaty? Wartość przyszła annuity, czyli renty (kapitalizacja z góry)

8 8 SFGćwiczenia 9 Przykład Kowalski zdecydował się wpłacać do banku po 800 zł co roku z góry przez okres 3 lat. Stopa procentowa nominalna roczna wynosi 5%. Jaka będzie wartość przyszła tej lokaty? Wartość przyszła annuity, czyli renty (kapitalizacja z góry)

9 9 SFGćwiczenia 9 Przykład Małżeństwo zdecydowało się stworzyć własny fundusz emerytalny. Wpłaciło j.p. na 20 lat oraz zobowiązało się wpłacać po j.p. co roku z góry. Jaki fundusz zostanie zgromadzony na koniec 20 roku, jeżeli wiadomo, że stopa procentowa wynosi 10 punktów?

10 10 SFGćwiczenia 9 Przykład Małżeństwo zdecydowało się stworzyć własny fundusz emerytalny. Wpłaciło j.p. na 20 lat oraz zobowiązało się wpłacać po j.p. co roku z góry. Jaki fundusz zostanie zgromadzony na koniec 20 roku, jeżeli wiadomo, że stopa procentowa wynosi 10 punktów?

11 SFGćwiczenia 9 Przykład Pewna osoba zdecydowała się dokonywać wpłat oszczędnościowych co miesiąc z dołu w wysokości 505,43 j.p., tak aby zgromadzić fundusz w wysokości j.p. Proszę obliczyć, przez ile lat należy dokonywać wpłat przy stopie 12%, wiedząc że kapitalizacja odbywa się co miesiąc, czyli jest równa z okresami wpłat.

12 SFGćwiczenia 9 Przykład Pewna osoba zdecydowała się dokonywać wpłat oszczędnościowych co miesiąc z dołu w wysokości 505,43 j.p., tak aby zgromadzić fundusz w wysokości j.p. Proszę obliczyć, przez ile lat należy dokonywać wpłat przy stopie 12%, wiedząc że kapitalizacja odbywa się co miesiąc, czyli jest równa z okresami wpłat.

13 13 SFGćwiczenia 9 Równanie bankierów (uproszczone) Równanie bankierów stanowi różnicę między kapitałem początkowym, a sumą wypłat rentowych na koniec okresu. K n w procencie składanym K n w rachunku rentowym (dla płatności z dołu) Gdzie: K n1 – kapitał początkowy sprowadzony na koniec okresu K n2 – suma wypłat rentowych sprowadzona na koniec okresu R – różnica między K n1 i K n2

14 14 SFGćwiczenia 9 Przykład W banku został zgromadzony kapitał w wysokości j.p. Z tego kapitału wypłaca się co miesiąc rentę z dołu. Obowiązuje kapitalizacja miesięczna wg stopy procentowej miesięcznej 1%. a) Jaka będzie maksymalna renta wieczysta? b) Jak długo można pobierać rentę stałą w wysokości 2000 j.p.

15 15 SFGćwiczenia 9 Przykład W banku został zgromadzony kapitał w wysokości j.p. Z tego kapitału wypłaca się co miesiąc rentę z dołu. Obowiązuje kapitalizacja miesięczna wg stopy procentowej miesięcznej 1%. a) Jaka będzie maksymalna renta wieczysta? b) Jak długo można pobierać rentę stałą w wysokości 2000 j.p. Ad a) Ad b) Obliczamy metodą iteracji Liczba miesięcy – 69 (reszta 1310)

16 SFGćwiczenia 9 Spłata kredytu ratą zmienną i stałą Przykład Przedsiębiorstwo produkcyjne zaciągnęło kredyt w wysokości 1000 j.p. na 5 lat przy oprocentowaniu rocznym równym 20%. Proszę zaprojektować plan spłaty kredytu dla dwóch wariantów: a) Kredyt jest spłacany pod koniec każdego roku w 5 stałych ratach kapitałowych, zaś odsetki naliczane są według malejącego salda zadłużenia na koniec każdego roku. W konsekwencji rata kredytu (płatność okresowa) jest zmienna. b) Kredyt jest spłacany pod koniec każdego roku w 5 stałych płatnościach (annuity, renta). Zatem płatność okresowa jest co roku identyczna oraz stanowi sumę raty kapitałowej i odsetek. Rata kredytu (płatność okresowa) jest więc stała.

17 Spłata zmienną płatnością okresową (zmienna rata kredytu) Spłata stałą płatnością okresową (stała rata kredytu)

18 SFGćwiczenia 9 Praca domowa Zadanie nr 1 Spółka pragnie ulokować depozyt w banku przy stałej stopie 16% rocznie, aby móc podjąć po upływie roku 2 mln PLN, a po upływie następnego roku kolejne 5 mln PLN. Proszę ustalić kwotę początkowego depozytu (jedna liczba!), aby spółka mogła w przyszłości zrealizować te dwie planowane wypłaty. Zadanie nr 2 Bank 26 kwietnia przyjął do dyskonta weksel na sumę PLN płatny 9 maja. Zdyskontowana wartość weksla wyniosła PLN. Proszę podać obowiązującą w danym banku stopę dyskontową oraz spodziewaną roczną stopę zwrotu z tej operacji (obowiązuje dokładność do 0,01%).

19 19 SFGćwiczenia 9 DZIĘKUJĘ ZA UWAGĘ


Pobierz ppt "SFGćwiczenia 9 UNIWERSYTET WARSZAWSKI WYDZIAŁ ZARZĄDZANIA Systemy finansowe gospodarki Matematyka finansowa cz.2 Warszawa 2012."

Podobne prezentacje


Reklamy Google